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Résumé

Les exoplanètes de faible masse montrent une diversité dans leurs densités et leurs conditions
d’irradiation, allant de planètes fortement irradiées à des mondes plus tempérés. Pour estimer
leur composition, nous avons développé un modèle de structure interne qui inclut de manière
autoconsistante une atmosphère en équilibre radiatif-convectif. Le modèle peut reproduire des
enveloppes d’eau et de CO2 dans les conditions extrêmes des exoplanètes hautement irradiées. Il
peut être utilisé comme modèle direct pour générer des relations masse-rayon, ainsi que dans le
cadre de notre propre modèle bayésien adaptatif de type Markov Chain Monte Carlo, ce qui permet
d’estimer les incertitudes des paramètres de composition de la panète compte tenu des barres
d’erreur de la masse et du rayon observés. Nous présentons les différents développements que
nous avons réalisés pour aboutir à l’implémentation cohérente du modèle couplé d’intérieur et
d’atmosphère et à sa validation.

Le modèle permet d’estimer des paramètres de composition avec leurs incertitudes respectives à
partir de la mesure de la masse et du rayon d’une planète donnée. Une fois la composition estimée,
il permet aussi d’évaluer l’observabilité des spectres d’émission des exoplanètes rocheuses avec le
télescope spatial James Webb. Dans le cas de systèmes multiplanétaires, l’analyse des compositions
des différentes planètes fournit des contraintes quant à leurs mécanismes de formation. Nous
discutons des propriétés que l’on peut déduire des compositions du large échantillon de 46 planètes
que nous avons analysé tout au cours de cette thèse, ainsi que des limitations dues aux incertitudes
de mesure auxquelles le modèle est confronté. Notre modèle peut servir de précédent à un cadre
de modélisation construit pour interpréter les données fournies par les missions à venir telles que
PLATO et Ariel. Notre modèle pourra également servir à interpréter les données fournies par les
missions à venir telles que PLATO et Ariel et préparer des analyses atmosphériques plus fouillées.

Mots clés: Exoplanètes. Intérieurs et atmosphères planétaires. Modélisation.
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Abstract

Low-mass exoplanets are showing a diversity in their densities and irradiation conditions, rang-
ing from highly irradiated planets to temperate worlds. To estimate their composition, we have
developed an interior structure model that includes self-consistently an atmosphere in radiative-
convective equilibrium. The model can reproduce water and CO2 envelopes under the extreme
conditions of highly-irradiated exoplanets, which are the most numerous population. It can be
used as a forward model to generate mass-radius relationships, as well as within our own Bayesian
adaptive Markov Chain Monte Carlo (MCMC), which estimates the uncertainties of the composi-
tional parameters, given the error bars of the observed mass and radius. We present the various
developments we carried out to achieve the coherent implementation of the coupled interior and
atmosphere model and its validation.

The applications of the model include the estimation of the compositional parameters with
their respective uncertainties based on observations for a single planet, the analysis of planetary
compositions within multiplanetary systems to constrain their formation mechanisms, and the
assessment of the observability of emission spectra for rocky exoplanets with the James Webb Space
Telescope (JWST). We discuss the properties that can be deduced from the compositions of the
large sample of 46 planets that we have analysed throughout this thesis, as well as the limitations
due to the measurement uncertainties and degeneracies. Our model may serve as a precedent to a
modelling framework for the interpretation of mass, radius and atmospheric characterization data
provided by upcoming missions such as PLATO and Ariel.

Keywords: Exoplanets. Planetary interiors and atmospheres. Modelling.
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1. Introduction

1.1. History of exoplanet characterization
The first detected exoplanet, 51 Peg b, was discovered by Mayor and Queloz (1995), expanding the
field of planetary science beyond the Solar System. Since then, more than 5000 exoplanets1 have
been detected, showing the wide variety in masses, radii and stellar irradiation of the exoplanet
population. There are several exoplanet detection methods, including microlensing, astrometry
and direct imaging, but the most prolific ones are transit photometry and the radial velocity method.
In transit photometry, we monitor the flux intensity of the light received from a star with time (see
Fig. 1.1, left panel). If a planet passes in front of the star while it is orbiting, it will produce a drop
in the star’s brightness. The depth of this drop is connected to the radius of the planet. Thus, the
analysis of the transit light curves allows us to estimate the radius of the planet with respect to
the radius of the star. On the other hand, the radial velocity method relies on the gravitational
effects caused by a planet on the star it orbits. The gravitational influence of the planet makes
the star orbit around the center of mass of the two bodies (see Fig. 1.1, right panel). This motion
affects the spectrum of the star seen from Earth’s position by the Doppler effect: the spectrum is
blueshifted when the star moves towards us (Fig. 1.1, bottom right), while it is redshifted when
it moves away (Fig. 1.1, top right). By analysing the variation of the spectral shift in time, we can
estimate the distance of the star from the center of mass of the two-body system, which is related
to the mass of the planet and the star. Additionally, the transit timing variation method (TTV) is
also extremely useful to discover and characterise the masses of exoplanets. In planetary systems
with more than one planet, gravitational perturbations are introduced in the orbit of each planet
by the other planets. These perturbations can slow down or accelerate the orbits, resulting in a
varying periodicity of the orbits (or a variation in the expected timing of the transit). The time
the transit deviates from a transit with constant period is related to the mass and number of the
other planets in the system. Therefore, if we measure the timing difference of enough transits, we
can estimate the masses of the planets in the system (Agol et al. 2005). These methods are biased
towards close-in and large planets, making hot Jupiters like 51 Peg b the first class of exoplanets to
be detected and characterized. However, 10 years after the discovery of the first exoplanet, the first
low-mass planet (M < 20 M⊕) was detected. This was the super-Earth GJ 876 d (Rivera et al. 2005),
and although the radial velocity method with which it was detected only provided its mass, it was
the precedent to the detection and characterization of a smaller class of exoplanets (R < 4 R⊕). This
led to the design of space missions and ground-based telescopes with the precision necessary to
detect these planets, as well as the development of interior models to interpret the data that they
would generate.

NASA’s Kepler (Borucki et al. 2006) and its extended mission, K2, probed a large sample of
exoplanets by the transit photometry method, obtaining their radius. It showed that low-mass
planets are very common and diverse, constituting ≃ 85% of detected exoplanets, and presenting
both rocky planets and planets with volatile envelopes (Weiss and Marcy 2014). The sample of

1NASA Exoplanet Archive, updated on August 1, 2022 (https://exoplanetarchive.ipac.caltech.edu).
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1. Introduction – 1.1. History of exoplanet characterization

planets that Kepler provided was statistically analysed by Fulton et al. (2017); Fulton and Petigura
(2018), who obtained its radius distribution. This distribution presents two peaks, one at R = 1.3 R⊕,
and another one at R = 2.4 R⊕. The size of the sample has been increased and the precision of the
radii improved by other transit photometry missions following Kepler, confirming this characteristic
distribution (Petigura et al. 2022). These missions are CHEOPS (Benz et al. 2021), and TESS (Ricker
et al. 2015), who have continued the legacy of Kepler by discovering more super-Earths and sub-
Neptunes, while refining their radii with a precision down to 1-2% in some cases. This has enabled
a comparison of the samples with planet interior and evolution models, confirming that the first
peak corresponds to planets mainly composed of Fe and Si-bearing rocks, known as super-Earths;
whereas the planets found in the second maximum of the distribution have a significant volatile
(H/He, water) content. In addition, it was been suggested that super-Earths could either form with
very little or no volatile content from the very beginning, or could have been born as sub-Neptunes
with H/He atmospheres that lost these due to atmospheric escape processes, transitioning to the
super-Earth regime. The most likely atmospheric escape mechanisms that produce the Fulton
gap are XUV photoevaporation and/or core-powered mass loss (Rogers et al. 2021). In the former,
hydrogen in the upper layers of the atmosphere escape due to the erosion of X-UV light from the
stellar host, which heats the upper atmosphere and induces an hydrodynamic flow (Lammer et al.
2003; Owen and Jackson 2012). Meanwhile, in core-powered mass loss, the core of the planet emits
heat that still remains from the accretion stage. If the primordial hydrogen envelope cools down
slower than the core, the thermal energy emitted by the core drives further the loss of atmospheric
mass from beneath the envelope. The amount of primordial atmosphere that is lost depends on the
planetary mass and the equilibrium temperature of the planet (Ginzburg et al. 2016).

To constrain the composition of exoplanets, not only the radius is required, but the planetary
mass is needed to obtain the total density. This means that transit photometry missions need
a radial velocity follow-up with a ground-based spectrograph, such as SOPHIE (Perruchot et al.
2008), HARPS (Mayor et al. 2003), HIRES (Vogt et al. 1994), and ESPRESSO (Pepe et al. 2021). The
first low-mass planet with a complete characterization of its density was super-Earth CoRoT-7 b
(Léger et al. 2009; Queloz et al. 2009), which is compatible with the presence of a water layer or a
secondary atmosphere, ruling out a dry rocky planet or a H/He atmosphere (Valencia et al. 2010).
The availability of more instruments at the end of the 2010s allowed us to obtain both the masses
and radii of more low-mass planets, including Earth-sized planets around M dwarfs, which are the
coolest and smallest stars in the main sequence. The discovery of the seven Earth-sized planets
around the M-dwarf TRAPPIST-1 was a break-through in exoplanetary science. The innermost two
planets (b and c) plus a third planetary signal were detected via the transit method by Gillon et al.
(2016), but a later analysis with more transit photometry data found that the third planet was the
combined signal of five planets (e to h), yielding a total of seven planets (Gillon et al. 2017). Three
of the planets in this system (e to g) are within the habitable zone (HZ), which is defined as the
range of distances from the host star at which surface water could be in liquid phase. Even though
the radii of the TRAPPIST-1 planets were characterised with a precision of 5%, their masses, which
were obtained via the radial velocity method, had uncertainties that were too large to provide tight
constraints on their densities. This motivated a follow-up with the TTV method, to refine their
masses uncertainties (Grimm et al. 2018; Agol et al. 2021). In the case of TRAPPIST-1, the masses
obtained by Grimm et al. (2018) were precise enough to provide individual estimates on the core,
water and gas mass fractions with uncertainties, hinting at a dichotomy between the inner water-
poor planets and the outer, icy planets. However, the scatter in water content within the system was
difficult to explain from the point of view of planet formation (Dorn et al. 2018). A refinement of
the mass estimates by Agol et al. (2021) cleared this scatter, unveiling an increasing water content
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Star Planet

(a) Transit photometry method

Star

Center of 
mass

Light 
waves

(b) Radial velocity method

Figure 1.1.: Illustration of the exoplanet detection methods that provide the planetary radius
(transit), and mass (radial velocity). The left panel shows the light curve of the hot Jupiter WASP-74
b during one transit (Courtesy: N. Crouzet). The right-hand plots in the right panel display the
spectrum of a F9-type star when redshifted (top), in the rest frame (middle), and when blueshifted
(bottom). The same set of three spectral lines is indicated as dashed lines.

with semi-major axis (Agol et al. 2021; Acuña et al. 2021). The discovery of the TRAPPIST-1 planets
were soon followed by other planets in the habitable zone of M dwarfs, such as rocky LHS 1140 b
(Dittmann et al. 2017), and the sub-Neptune K2-18 b (Montet et al. 2015; Benneke et al. 2019), as
well as multiplanetary systems, such as K2-138 (Christiansen et al. 2018) and TOI-178 (Leleu et al.
2019).

The next step to characterise a planet, after detecting it and obtaining its density, is atmospheric
characterization. Atmospheric data bring important information about its composition, formation
and evolution. There are several methods to characterize the atmosphere of a planet, which include
the following:

• Transmission spectroscopy. Similarly to the transit photometry detection method, transmis-
sion spectroscopy monitors the brightness of a star during a transit. In this case, the light
gathered by the telescope is passed through a diffracting element, such as a diffraction grid,
to decompose the white light into different wavelengths. During the transit, the light of the
star passes through the atmosphere of the planet, interacting with its gaseous species, which
imprint the photons at different wavelengths with spectral absorption lines. This causes the
radius of the planet to vary with wavelength, which is the final transmission spectrum. Seager
and Sasselov (2000) laid out and proposed this method initially, while the first detection of an
atmospheric species was done by Charbonneau et al. (2002), who found sodium lines in the
transit spectrum of a hot Jupiter. Since then, several molecular species have been found in
Jupiter-sized planets, including water, as well as Rayleigh scattering in the optical caused by

11



1. Introduction – 1.1. History of exoplanet characterization

clouds and hazes (Sing et al. 2016).

• Emission spectroscopy. As the planet orbits its host star, there will be a point in time when it
will pass behind the star as seen from Earth, which is the secondary eclipse (see Fig. 1.2). Just
shortly after and before the secondary eclipse, spectroscopic measurements of the flux probe
the dayside emission of the exoplanet’s atmosphere. Simultaneously, part of the stellar light
will be scattered by the atmosphere, generating the reflection spectrum. This corresponds
to the variation of the albedo with wavelength. The albedo is defined as the fraction of the
stellar light that is reflected by the planet. This means that an albedo close to 1 shows a fully
reflecting atmosphere, which is characteristic of clouds (MacDonald et al. 2018). To obtain
the dayside emission, the flux of the star plus the planet is compared with the stellar flux
alone during the secondary eclipse. In the near infrared (NIR), molecular spectral lines can be
detected, while in the optical, the emission spectrum can show reflected light from clouds and
hazes. Absorption lines point out to a decreasing temperature gradient with height, whereas
emission lines suggest a thermal inversion, which means that temperature increases with
height (Perryman 2018).

• Phase curves. If the orientation of the planetary system allows to cover a complete orbit with
photometric observations, the variation of the star-plus-planet brightness can be monitored,
obtaining the phase curve. It will show a slow increase in flux as the dayside of the planet
faces Earth (see ’Phase Curve’ arrow in Fig. 1.2). Then the phase curve will have a dip down to
the single star’s flux during the secondary eclipse, followed by a second dip that corresponds
to the transit, whose flux decreases down to the star-minus-planet level. The amplitude of the
variation between the dayside emission and the nightside, as well as the shape of the phase
curve, provide information on the efficiency of the distribution of energy with the longitude
of the planet. This is particularly interesting for tidally locked planets: if there is no efficiency
in heat re-distribution and the dayside and nightside have very different temperatures, there
might be a very thin atmosphere or no atmosphere at all. In the case of Jupiter-size planets, the
efficiency in heat re-distribution is very dependent on winds. Moreover, the phase curve can
be diffracted in different wavelengths, obtaining the phase-dependent vertical temperatures,
which provides the thermal structure and winds speed in hot Jupiters (Stevenson et al. 2014).

Figure 1.2.: Geometry of a transiting exoplanet for different atmospheric characterization tech-
niques. After Gao et al. (2021).
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The first atmospheric characterization data were the transmission spectra of hot Jupiters (Couste-
nis et al. 1997; Charbonneau et al. 2002), obtained with space-based telescopes. Later on, the
two observatories that have played an important role in probing the atmospheres of low-mass
planets are Spitzer (Werner et al. 2004), and the Hubble Space Telecope (HST). The first super-Earth
to show a spectrum with spectral features and a non-flat phase curve was 55 Cancri e. Its HST
transmission spectrum revealed a light atmosphere that could contain H/He, with hints of HCN
(Tsiaras et al. 2016). Its Spitzer phase curve showed a large contrast between the dayside and the
nightside, suggesting that 55 Cancri e has a thick atmosphere with low efficiency heat re-distribution
(Demory et al. 2016). Later on, more exotic compositions, such as a silicate atmospheres, have
been looked for with ground-based transmission spectroscopy. However, the non-detection of
mineral species has enabled to set absorption limits on these species in 55 Cancri e (Keles et al.
2022). Subsequently, the transmission spectrum of another super-Earth was obtained, GJ1132 b,
being featureless and flat, which suggests that there is no atmosphere, or that the atmosphere has a
high mean molecular weight or clouds/hazes (Diamond-Lowe et al. 2018; Mugnai et al. 2021). In
contrast, a spectral feature around 1.4 µm was detected in K2-18 b (Tsiaras et al. 2019; Benneke et al.
2019). It is under debate whether this absorption line in the transmission spectrum is due to water,
which could indicate the presence of a condensed water layer underneath the atmosphere (Mad-
husudhan et al. 2020), or methane (Bézard et al. 2020). The case of K2-18 b shows that atmospheric
retrieval is a very degenerate problem, where not only the gaseous species and their abundances
have a primary influence in the final spectrum, but also the thermal structure, non-equilibrium
chemistry and aerosol parametrization. Additionally, stellar contamination can also hamper at-
mospheric characterization observations, especially of exoplanets around M-dwarfs. Ducrot et al.
(2018) obtained the combined transmission spectrum of TRAPPIST-1 planets by gathering data
with different instruments, including Spitzer and HST. This spectrum shows a strong inverted water
feature, which is due to the formation of water vapour in the cold dark spots on the surface of the
host star (Zhang et al. 2018). Other stellar contamination models with higher spot temperatures
and a lower spot surface coverage could not account for the complete set of data, which could
lead to the conclusion that the spectral water signals come for the planetary atmosphere, and not
the stellar one. This shows the importance of stellar contamination modelling in atmospheric
characterization. Very recently, the transmission spectrum of LHS1140 b was acquired with HST,
showing a tentative water feature. This water feature can be fully explained by stellar contamination
models, or could be a combination of contributions from the planet and the star (Edwards et al.
2021). Simultaneous works also include the atmospheric characterization of sub-Neptune GJ1214 b,
which has a tentative detection of He (Orell-Miquel et al. 2022); hot super-Earth π Mensae c, whose
detection of C II ions indicates atmospheric escape of a high-molecular atmosphere (García Muñoz
et al. 2021); and K2-141 b, which might present a tenuous silicate atmosphere (Zieba et al. 2022).
Finally, the atmospheric characterization techniques can also be used to confirm the absence of an
atmosphere, which is the case of the transmission spectrum of LHS 3844 b (Diamond-Lowe et al.
2020). Moreover, Kreidberg et al. (2019) were able to constrain the material the surface is made
of, based on the emission flux, which favours a basaltic rock. These examples show the diversity
in bulk and atmospheric compositions in low-mass planets, which require detailed interior and
atmosphere models to interpret the upcoming data with on-going and future observatories.
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1.2. Interior and atmosphere models
Given the mass and radius of a planet, MP and RP respectively, its density can be calculated
assuming a perfect sphere shape:

ρP = MP

4

3
πR3

P

(1.1)

The density can be used as a proxy of the composition in first approximation. Planets rich in
rocks and iron have densities similar to that of the terrestrial planets in the Solar System (ρP ≃
3.9 - 5.5 g /cm3), while planets with a volatile composition have low densities, ρP < 1.65 g /cm3.
Nonetheless, the density does not only depend on the composition, but also on the mass and the
dependence of the temperature with radius that is assumed, which is the thermal structure of the
interior. This is why detailed interior models are necessary to obtain an accurate estimate of the
composition of a planet. Interior models compute the radius of the planet given their mass and
their composition. This is done by solving a set of equations that describe the density, the transport
of heat, and the behaviour under the effects of gravity and pressure of the different materials (Fe,
rock, water, hydrogen). For a first approximation of the planetary composition, the mass and radius
can be compared to mass-radius relationships. These are computed by interior models, and express
the radius as a function of mass for a constant interior configuration or composition (see Fig. 1.3
for an example of mass-radius diagram and relationships). These relations were derived for the
gaseous giants of the Solar System as far back as the 1970s (Hubbard 1973), followed years later by
the mass-radius relations for the first super-Earth, GJ 876 d (Valencia et al. 2006; Seager et al. 2007).

A variety of interior models has been developed to describe the diversity found in exoplanets.
For terrestrial planets, interior models take as reference the Earth, Venus and Mars (Valencia et al.
2006), which present an inner Fe core, surrounded by a silicate mantle. Exoplanets with significant
water/ice layers were proposed by Léger et al. (2004), named ocean planets, containing a Fe core
and rock layer with a global ocean layer of 100 km. Further works propose the formation of a high
pressure, high temperature layer in these ocean planets, especially for highly-irradiated planets,
where water can reach supercritical and plasma phases (French et al. 2016; Mazevet et al. 2019;
Mousis et al. 2020), which have very different densities compared to liquid and ice water. Seager et al.
(2007), Fortney et al. (2007), and Lopez and Fortney (2014) considered H/He-dominated interiors
instead of water-rich compositions by using single-material layers of Fe for the core, perovskite
(MgSiO3) for the mantle, and a H and He mixture for the envelope. It becomes clear that there are
intrinsic degeneracies in the composition of exoplanets. We say a problem is degenerate when
many possible solutions yield the same result. In this case, this means that several composition
configurations produce the same planetary density. Fig. 1.3 shows an example of this. The mass
and radius of 55 Cancri e could be explained by a pure silicate rock composition (100% mantle),
or by an interior that contains Fe, with a water atmosphere on top. This is because Fe increases
the planetary density, while a water atmosphere decreases it, compensating each other’s density
changes with respect to the 100% mantle case. Another degeneracy would be between the fraction
of mass that constitutes the atmosphere, and the atmospheric composition. An example of this is
HD 207897 b (Heidari et al. 2022), whose density could be accounted for with a water atmosphere
that constitutes 25% of its mass, or a H2 envelope that entails only 0.2% of its mass, assuming the
same rocky core underneath (see Fig. 1.3). To reduce the former degeneracy, it has been proposed
to consider the Fe and Si abundances of the host star (Valencia et al. 2007; Dorn et al. 2015; Brugger
et al. 2016; Unterborn et al. 2018; Wang et al. 2018). The abundances of the refractory elements
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in the protoplanetary disk and the stellar host are similar. Formation models indicate that the
planets formed in the planetary disk retain this Fe-to-Si abundance ratio (or Fe/Si mole ratio)
by accreting material from the protoplanetary disk (Thiabaud et al. 2015). Therefore, it is widely
extended in interior modelling to use the chemical stellar abundances of Fe and Si to constrain
the core-to-mantle ratio, as most of the Fe is found in the core, and the mantle contains Si. While
the core mass fraction (CMF) is constrained by the Fe/Si mole ratio, the remaining compositional
parameter, which is the volatile mass fraction (or water mass fraction, for models that only consider
a water layer), is controlled by the density. Nonetheless, it is still under discussion if the stellar
Fe/Si ratio represents accurately the real Fe/Si of the planet interior (Dorn et al. 2015; Adibekyan
et al. 2021). Therefore, the most complete interior structure analyses should include scenarios with
different Fe/Si ratios.
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Figure 1.3.: Mass-radius diagram for super-Earth 55 Cancri e, and sub-Neptune HD 207897 b. Mass-
radius relationships for supercritical water (SW) (Acuña et al. 2021), rocky dry planets (Brugger
et al. 2017), and H/He atmosphere planets (Zeng et al. 2019) are shown to illustrate the degeneracy
in planetary interiors. Grey points and error bars show the discovered exoplanets with mass and
radius measurements (NASA Exoplanet Archive).

Back in 2019, at the start of this PhD thesis, the interior models developed to explore different
Fe/Si ratios for low-mass planets had limitations: they were only applicable to planets with liquid
water surface conditions (Brugger et al. 2016; Unterborn et al. 2018), or they considered a H/He
atmosphere on top of an ice layer (Dorn et al. 2017). However, many of the exoplanets we character-
ize are highly irradiated, where water would be in the form of gas instead of liquid or ice. Applying
an interior model with liquid/ice water to these planets would overestimate the real water content,
since ice and liquid water are more dense than steam. Therefore, there was a need to develop
an interior model that could calculate consistently the effects of an atmosphere on the surface
conditions and the radius of super-Earths and sub-Neptunes, while it could simultaneously explore
different core-to-mantle fractions. In addition, super-Earths cannot present H/He envelopes given
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their small radius (Lopez and Fortney 2014), making secondary atmospheres with water and CO2

more appropriate to assume in the modelling of their interior. It was still to be seen if the densities
of sub-Neptunes could be explained only with H/He envelopes (Zeng et al. 2019), or if they were
also consistent with pure water envelopes.

An envelope needs to be implemented to account for the effects of a highly irradiated atmosphere.
Until 2019, the atmosphere prescriptions within interior models were typically analytical radiative
models. For example, Valencia et al. (2013), Jin et al. (2014) and Dorn et al. (2017) used an analytical
model that is benchmarked with a numerical full-physics atmosphere model for a fixed atmospheric
solar composition. Their advantage is that they are computationally fast compared to numerical
atmosphere models. Analytical models are derived by assuming an approximation to the radiative
transfer equation and prescribe the pressure, temperature and opacity (P-T-τ) profile depending
on different free parameters (Guillot 2010; Heng et al. 2014). The opacity is a proxy of how opaque
is an atmosphere layer to radiation, being close to 0 if the gas layer is transparent and lets all
radiation pass through. They require the calculation of the mean opacity, which is often assumed
to be independent of wavelength. This is known as a grey opacity, and it is only dependent on the
pressure and the temperature. Tabulated values of grey opacities were publicly available (Freedman
et al. 2014), but only for H/He-dominated atmospheres. Consequently, these tabulated opacities
do not reflect the absorption and emission behaviour of a secondary atmosphere that is mainly
composed of H2O, and/or CO2. There are atmosphere analytical models that allow for non-grey
opacities, such as the picket fence model (Parmentier and Guillot 2014); as well as analytical models
adapted to the secondary atmospheres of Solar System bodies, such as Venus and Titan (Robinson
and Catling 2012; Tolento and Robinson 2019). However, they would still require a numerical
non-grey atmospheric model to calibrate their free parameters. Moreover, they would not be able
to generate spectra to use for predictions of atmospheric characterization observations. Therefore,
for our purposes, numerical atmosphere models are more appropriate to couple with an interior
model. One-dimensional atmospheric models can be divided in two types of models depending
on how they compute their opacities: line-by-line models, and k-correlated models. Line-by-line
models are able to compute the shape and intensity of each individual opacity line to produce
high-resolution spectra; whereas k-correlated models perform an approximation in the integration
of the opacity over wavelength to reduce the data and computation time.

Finally, the interior models mentioned so far, such as the one developed by Brugger et al. (2017),
are forward models. This means that their input parameters are not necessarily observable, such
as the water or Fe content of the planet. To have as input the observable parameters (mass and
radius), and as output the non-observables, it is necessary to invert the forward problem. Bayesian
inversion methods are used to do this, such as Markov Chain Monte Carlo (Mosegaard and Tarantola
1995) and nested sampling (Buchner 2021). These are also necessary to take into account the error
bars of the observables to estimate the uncertainties of the non-observable parameters. While these
methods were widely used in atmospheric composition retrieval, very few studies had implemented
these to retrieve the interior composition (Dorn et al. 2015).

1.3. Outline
At the beginning of this PhD thesis, the interior model developed by Brugger et al. (2017) had a
detailed implementation of a Fe core, a Si-rich mantle and a condensed water layer with liquid
and ice VII phases. I started my PhD by continuing the development of this interior model so it
would be applicable to highly-irradiated planets. This involved changing the data that express
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the relations between the pressure, temperature, and the density in the water layer of the interior
model, which are the Equation of State (EOS) and the Grüneisen parameter. In Chapter 2, I detail the
implementation of the water layer in the interior model for highly-irradiated conditions, namely the
supercritical water layer. Moreover, I also carry out a comparison of different EOS for supercritical
water, their validity and effects on the computation of mass-radius relationships of water-rich
planets.

In addition, I coupled the interior model with a one-dimensional k-correlated model for water
atmospheres to account for the effects the atmosphere produces on the surface conditions and on
the total planetary radius. In 2019, only planet formation models had been consistently coupled
with atmospheric models (Linder et al. 2019; Marleau et al. 2019). Consequently, I had to develop
an algorithm specifically designed to couple our interior model with the atmospheric model devel-
oped by Marcq et al. (2017) and Pluriel et al. (2019). In Chapter 3, I detail the algorithm to couple
self-consistently the interior model exposed in the previous chapter with this atmospheric model.
The initial coupling was done by using pre-generated files of the atmospheric parameters, instead
of running the interior and the atmosphere at the same time. I updated the EOS and opacity data,
and propose a k-uncorrelated approximation for the atmospheric model (see Chapter 4) to produce
low-resolution emission spectra and radius estimates simultaneously. In the time I completed
this PhD thesis (2019-2022), several interior models have been coupled to numerical atmospheric
models. These include line-by-line models coupled to generate high-resolution spectra to pre-
dict observations (Katyal et al. 2020; Madhusudhan et al. 2020), as well as k-correlated models to
compute the interior conditions of habitable ocean planets (Marounina and Rogers 2020), and the
radius of highly-irradiated water-rich planets (Turbet et al. 2020). This shows that the development
of interior-atmosphere models for super-Earth and sub-Neptune exoplanets is an active research
field, and the work presented in this thesis contributes with a different approach compared to inde-
pendent and simultaneous studies. Finally, in Chapter 5 I explain the MCMC Bayesian algorithm I
implemented to obtain the posterior distribution functions of the compositional parameters and
basic atmospheric parameters. In this Chapter, I also include a brief explanation of the user-friendly
interface I built to use the interior and atmosphere models in Python 3, as well as optimization of
the interior model to facilitate its use with MCMC methods and packages.

The aim of this work is to provide a modelling framework to obtain the compositional parameters
with their respective uncertainties based on the error bars of the observed mass and radius, under
the assumption of a water-dominated volatile layer. The applications of our model are shown in
Chapter 6. This includes TRAPPIST-1, the planetary system that is well-known for hosting seven
terrestrial planets, three of which are in the habitable zone. Agol et al. (2021) obtain estimates with
an interior model on the core and water contents with the most precise mass data on the system.
However, our self-consistent interior-atmosphere presents a few improvements in comparison
to their modelling work, including the inclusion of a CO2 atmosphere composition for the inner
planets (see Sect. 6.1).

Multiplanetary systems act as laboratories to explore the diverse formation and evolution path-
ways of low-mass planets, as they highlight differences in composition caused by different formation
mechanisms within the same environment. A self-consistent interior structure model that is appli-
cable to a wide range of irradiations such as ours allows us to carry out a homogeneous analysis of
a sample of multiplanetary systems (see Sect. 6.2). By doing this, we overcome the differences in
volatile mass fraction estimates of multi-planetary systems due to the different assumptions taken
by each interior structure model in the literature.

In addition, I also perform an interior analysis of several low-multiplicity systems, or multiplane-
tary systems with only a few planets whose masses and radii are available. These systems include
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LHS 1140, which hosts one Earth-sized planet in the habitable zone, LHS 1140 b; and TOI-220
b, which is a highly-irradiated sub-Neptune located in the Fulton gap, which is interesting from
the point of view of atmospheric escape. The final application of our model is the generation of
emission spectra to assess the observability of two targets of interest for the James Webb Space Tele-
scope (JWST), TRAPPIST-1 c and 55 Cancri e. I close Chapter 6 with a discussion on the complete
sample I have analysed, with insights into the composition of the low-mass planet population and
uncertainty trends.

In Chapter 8, I summarize the key findings of our model, while also commenting on the future
work necessary to keep reducing the degeneracies found in interior and atmosphere modelling.
I conclude this thesis by elaborating on the application of self-consistent interior-atmosphere
models to the data that will be provided by on-going and future missions such as JWST, Ariel, and
PLATO.
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This chapter introduces the new developments implemented in the interior model with respect to
the versions that existed in 2019, when I started this PhD thesis. The first version of the model is
for planets with liquid water on their surface (Brugger et al. 2016, 2017), which is presented at the
beginning of Section 2.1. The second version of the model, which is applicable to planets with ice
phases on their surface (see Fig. 2.1, blue), was initially implemented by M. Levesque (Levesque
2019). The improvements introduced in this version are detailed in Sect. 2.1.1. The third version
has the aim of making the model applicable to volatile-rich planets whose surface conditions do
not allow for the presence of liquid water by implementing a supercritical water layer. The existing
supercritical version in 2019 is introduced in Sect. 2.1.2.

The updates I performed in the supercritical water model with respect to the existing version in
2019 are indicated in Sect. 2.2.

Triple point

Critical point

Figure 2.1.: Water phase diagram showing the four main phase of water: liquid, ice, vapor, and
supercritical. The version of the model for planets with liquid water (Brugger et al. 2017) covers
the area indicated in green stripes. The ice (see Sect. 2.1.1) and supercritical (see Sect. 2.1.2)
versions of the model cover the regions marked in blue and red, respectively. Dashed blue lines
mark the boundary between supercritical and liquid and vapor phases (right), as well as the lowest
temperature in ice VII that the model of Brugger et al. (2017) would cover (left). Grey lines delimit
the ice transitions in the ice version of the model.
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2.1. Existing model in 2019
The interior structure model for low-mass planets was initially developed by Brugger et al. (2016,
2017), which is a 1D model that presents three separate layers: a Fe-rich core, a Si-rich mantle and
a condensed water layer (see Fig. 2.2). The input of the model are the planetary mass and two
compositional parameters. These parameters are the core mass fraction (CMF) and the water mass
fraction (WMF), which are calculated as the mass of the corresponding layer (core or hydrosphere,
respectively) divided by the total mass of the planet. The one-dimensional grid in the model
represents the radius, ranging from zero at the center of the planet, up to the surface. Along the
spatial grid, we calculate the pressure, P (r ); the temperature, T (r ); the gravity acceleration , g (r );
and the density, ρ(r ). These are computed by solving a set of four differential equations (see Eqs.
2.1 to 2.5), which correspond to the equation of hydrostatic equilibrium for the pressure, Gauss’s
theorem for the gravity acceleration, the adiabatic gradient for the temperature, and the equation
of state (EOS) for the density. In this work, we adopt the Vinet EOS (Vinet et al. 1989) with a thermal
correction for the core, the lower mantle, and the upper mantle. Reference parameters of the Vinet
EOS for these three layers can be found in Tables 2.1 to 2.3 of Brugger (2018).

Figure 2.2.: Interior layers for a water-rich, Earth-sized planet according to our model for temperate
planets. In the interior structure model for highly-irradiated planets, the ice VII and liquid water
layers are substituted by a supercritical water layer. (Image credits: National Geographic Society).

In Eqs. 2.1 to 2.5, G = 6.674×10−11 m3 kg−1 s−2 is the gravitational constant. m represents the
mass contained within the radius r , whereas γ and φ are the Grüneisen and the seismic parameters,
respectively. The Grüneisen parameter represents the dependence of the vibrational properties of a
crystal with the size of its lattice. It establishes the relation between the temperature in a solid to its
total density. The seismic parameter characterises the propagation of seismic waves inside a solid.
These two parameters are defined in Eq. 2.5, where E corresponds to the internal energy, and V is
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volume.
The differential equations require boundary conditions to be solved. These conditions consist

of the gravitational acceleration at the planetary center, g (r = 0) = 0, and the surface temperature
and pressure, P (r = R) = Psur f and T (r = R) = Tsur f . Eqs. 2.1 to 2.5 are solved iteratively until
the pressure, temperature, gravity and density profiles have converged (see Fig. 2.3). Once the
density profile is known, the mass of each layer can be computed by integrating Eq. 2.6, which is
the equation of mass conservation (Brugger et al. 2017; Sotin et al. 2007). The sum of the masses
of all layers is then the total planetary mass, whereas the CMF and the WMF are calculated as the
mass of the core and the hydrosphere layers divided by the total mass, respectively. The interior
model reaches convergence when the total integrated mass is equal to the input planetary mass.

dP

dr
=−ρg (2.1)

d g

dr
= 4πGρ− 2Gm

r 3
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In addition to the CMF and the WMF, the interior structure model also calculates a third composi-
tional parameter, which is the Fe/Si mole ratio. This is defined as:(

Fe

Si

)
P
=

∑3
i=1 ni (Fe)i∑3
i=1 ni (Si )i

(2.7)

where ni = Mi /Mmol ,i is the ratio between the mass of layer i , and the mean molecular mass of
the material that composes the layer. (Fe)i and (M g )i are the mole fractions of Fe and Si in layer i ,
respectively. The detailed distribution of the materials and chemical species in the core and mantle
can be found in Brugger (2018). The Fe/Si mole ratio can be derived analytically as well (Brugger
et al. 2017): (

Fe

Si

)
P
= 1

M g #

(
M g

Si

)
P

[
1−M g #+ Mmol ,2

Mmol ,1

C MF

1−C MF −W MF

]
(2.8)

where Mg# is the Mg number, and Mmol ,1 and Mmol ,2 are the mean molecular weight of the core
and the lower mantle, respectively. The Mg number is defined as M g # = (

M g /(M g +Fe)
)

mantle . If
the planet is fully differentiated, in other words, all Fe is found in the core and all Mg is found in the
mantle, the Mg number is equal to 1. Therefore, Mg# indicates the level of differentiation of the
planet. In Eq. 2.8, for constant values of Mg#, molecular weights of the core and lower mantle, and
Mg/Si mole ratio, the Fe/Si is only dependent on the CMF and the WMF. Fig. 2.4 shows the varying
WMFs and CMFs values along a line where the Fe/Si mole ratio is constant. We denote these Fe/Si
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isolines. The Fe/Si mole ratio can help break the degeneracy of the WMF and CMF for a given pair
of planetary mass and radius Brugger et al. (2017).
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Figure 2.3.: Planetary profiles for a water-rich, Earth-sized planet calculated by our model for
temperate planets. The assumed parameters are M = 1 M⊕, CMF = 0.32, WMF = 0.10, Psur f = 1 bar,
and Tsur f = 288 K.

Depending on the surface conditions, the water layer, which is the outermost layer, can present
different phases. Brugger et al. (2016, 2017) implement liquid and ice VII phases, which are relevant
for temperate planets whose irradiation conditions are similar to that of Earth. Nonetheless,
many of the extrasolar planets that we detect and characterise currently are in very close-in orbits,
showing irradiation temperatures far above the critical point of water. This makes necessary the
implementation of high-temperature, high-pressure phases in the interior structure model, which
we explain in Sect. 2.2.
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Figure 2.4.: Ternary diagram with isolines of constant Fe/Si mole ratio.

2.1.1. Ice implementation
The version of the model described above assumes that the outermost layer of the planet is liquid
water, with a high-pressure ice VII layer underneath. In addition to this version, there existed a
version of the model that had implemented more ice phases so the model could be applicable to
icy planets. Icy planets have lower surface temperatures than planets that can sustain liquid water,
which correspond to temperatures below 250 K. This version of the model was developed by Maëva
Levesque (Levesque 2019). In the sample of planets I have analysed in this thesis, three of them
required to use this version of the model due to their low temperatures: TRAPPIST-1 f, g and h (see
Chapter 6).

I revisited the original code and modified the implementation of the interfaces between the layers
of ice to represent more accurately their respective phase transitions. These phase changes are ice
VII to VI, VI to II, III to V, I to II, and I to III (see Fig. 2.5). These are now fully based on the phase
transition functions provided by Dunaeva et al. (2010).

Further details on this version of the model can be found in section 2.2 of Acuña et al. (2021)
(see Sect. A.1 in the Appendix), including the calculation of the EOS of the ice phases and their
corresponding references.
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Figure 2.5.: Water phase diagram for ice phases. Grey dashed lines and solid orange ones highlight
the differences in the implementation of the phase changes between the interior model version in
2019 and the model used in (Acuña et al. 2021) (see Appendix A.1). Dotted lines show the pressure-
temperature profiles for a planet with 41% Fe, 5% water, M = 1.36 M⊕, and a surface pressure of 600
bar.

2.1.2. Supercritical implementation
The high-pressure and high-temperature phases of water correspond to the supercritical and
superionic phases in ocean planets (Zeng and Sasselov 2014; Thomas and Madhusudhan 2016),
whose density is significantly lower than that of liquid and ice water. The Equation of State (EOS)
is the mathematical expression that yields the pressure of a material given a certain density and
temperature, p = p(ρ,T ). Consequently, the first step in the inclusion of the supercritical phase in
the interior model is to substitute the EOSs of the condensed water layer by an EOS that is valid in
the supercritical pressure and temperature ranges.

J. Naar implemented a supercritical water layer in 2019 (Naar 2019). I revised and corrected
this code in collaboration with A. Aguichine. We corrected the computation of the complete
temperature profile and the density at the top interface of the supercritical layer, in addition to
solving convergence issues. This corrected version was used to calculate pressure-temperature
profiles and mass-radius diagrams in Mousis et al. (2020). Nonetheless, the EOS implemented for
supercritical water in this version by J. Naar corresponds to that of Duan and Zhang (2006) (see Sect.
2.2.1.2), which is based on quantum molecular dynamics simulations, rather than experimental
data as the standard EOS for steam (Wagner and Pruß 2002). I carried out a bibliographic revision,
where I found an EOS that combines both experimental data and theoretical simulations (Mazevet
et al. 2019). I present a comparison between these three formulations in the next section.
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2.2. Supercritical water
In Section 2.2.1, I explain the formalism of the three EOSs developed for the supercritical regime of
water, and I compare them. These EOSs are the International Association for the Properties of Water
and Steam (IAPWS-95) EOS (Wagner and Pruß 2002), Duan and Zhang (2006) (DZ06) and Mazevet
et al. (2019) (M19) EOSs. Similarly, of these three formulations, two of them also present a formalism
for the Grüneisen parameter. In Sect. 2.2.2, I describe their implementation for the high-pressure,
high-temperature supercritical regime. Finally, in Section 2.3, I compare the resulting mass-radius
relationships with varying water contents and formulations.

2.2.1. Equation of State
2.2.1.1. IAPWS-95 formulation

The IAPWS-95 EOS is based on a formulation that fits experimental data within its validity region,
and shows reasonable behaviour within its extrapolation region in the water phase diagram. The
validity region is 251 to 1273 K in temperature and up to 1 GPa in pressure; whereas the extrapolation
area ranges from 1273 K to 5000 K in temperature, and 1 GPa to 100 GPa in pressure.

The IAPWS-95 EOS is formulated as a function of the Helmholtz free energy. In its dimensionless
form, f (ρ,T ), it can be separated in two terms: an ideal-gas term, φ0, and a residual one, φr :

f (ρ,T )

RT
=φ(δ,τ) =φ0(δ,τ)+φr (δ,τ) (2.9)

where δ= ρ/ρc and τ= Tc /T . ρc = 322 kg/m3 and Tc = 647.096 K are the density and temperature
at the critical point of water, respectively. The pressure (in kPa) is defined as:

p(δ,τ) = (1+δφr
δ) ρRT (2.10)

where R is the specific gas constant, R = 0.461 kJ kg−1 K−1. We defineφr
δ

as the first partial derivative
of the residual term of the Helmholtz free energy with respect to δ. This is expressed as the sum of
four terms:

φr
δ =φr

δ,1 +φr
δ,2 +φr

δ,3 +φr
δ,4 (2.11)

Each of these parts are defined as:

φr
δ,1 =

7∑
i=1

ni diδ
di−1τti (2.12)

φr
δ,2 =

51∑
i=8

ni e−δci
[
δdi−1τti

(
di − ciδ

ci
)]

(2.13)

φr
δ,3 =

54∑
i=52

niδ
diτti e−αi (δ−εi )2−βi (τ−γi )2

[
di

δ
−2αi (δ−εi )

]
(2.14)

φr
δ,4 =

56∑
i=55

ni

[
∆bi

(
Ψ+δ∂Ψ

∂δ

)
+ ∂∆bi

∂δ
δΨ

]
(2.15)

where ni , di , ti , ci , αi , βi , γi , εi , bi , Ai , Bi , Ci and Di are tabulated coefficients that can be found in
Table 2 of Wagner and Pruß (2002). For the fourth term, the variables Ψ and ∆ are expressed as:
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Ψ= e−Ci (δ−1)2−Di (τ−1)2
(2.16)

∆= θ2 +Bi
[
(δ−1)2]ai (2.17)

where θ = (1−τ)+ Ai
[
(δ−1)2

]1/2βi . Finally, their partial derivatives with respect to δ are:

∂Ψ

∂δ
=−2Ci (δ−1)Ψ (2.18)

∂∆bi

∂δ
= bi∆

bi−1∂∆

∂δ
(2.19)

where:

∂∆

∂δ
= (δ−1)

{
Aiθ

2

βi

[
(δ−1)2]1/2βi−1 −2Bi ai

[
(δ−1)2]ai−1

}
(2.20)

2.2.1.2. Duan & Zhang formulation

The EOS developed by Duan and Zhang (2006) consists on a fit to molecular dynamics simulations
that assume an ab initio molecular potential. Its validity region extends up to 2573 K in temperature,
and up to 10 GPa in pressure. In comparison to the experimental data from the IAPWS-95, DZ06
presents a deviation of 0.1%, while in its remaining validity region, the deviation from the IAPWS-95
EOS is 1.3%. The extended region spans up to T = 2800 K and p = 35 GPa, with deviations from
other benchmark EOS of up to 5% (Duan et al. 1996).

The pressure is formulated as:

p(V ,T ) = Z RT

V
(2.21)

where R is the universal gas constant, R = 83.14467 cm3 bar K−1 mol−1, and V is the mole density
in mol/cm3. The adimensional comprensibility factor, Z , is expressed as a sum of several end-
members:

Z = 1+ BVc

V
+ CV 2

c

V 2
+ DV 4

c

V 4
+ EV 5

c

V 5
+ FV 2

c

V 2
×

(
β+ γV 2

c

V 2

)
e−γV 2

c /V 2
(2.22)

The parameters of these end-members are defined as:

B = a1 + a2

T 2
r
+ a3

T 3
r

(2.23)

C = a4 + a5

T 2
r
+ a6

T 3
r

(2.24)

D = a7 + a8

T 2
r
+ a9

T 3
r

(2.25)

E = a10 + a11

T 2
r
+ a12

T 3
r

(2.26)

F = α

T 3
r

(2.27)
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Tr = T

Tc
(2.28)

Vc = RTc

Pc
(2.29)

where the ai coefficients are tabulated values shown in Table 4 of Duan and Zhang (2006); Tc and
Pc are the temperature and pressure at the critical point of water, which are tabulated as Tc = 647.25
K and Pc = 221.19 bar.

2.2.1.3. Mazevet formulation

The EOS presented in Mazevet et al. (2019) consists on a fit to the experimental data from Wagner
and Pruß (2002), and molecular quantum simulation data for pressure and temperature conditions
outside the experimental range. For the high-pressure region, the simulations consider first-
principles quantum molecular dynamics and the Thomas-Fermi extension limit. This region
extends from T = 1000 to 105 K and ρ = 1 to 100 g/cm3, which corresponds to pressures of 100-150
GPa approximately (see Fig. 4 in Mazevet et al. 2019). These ranges comprise the plasma and
superionic phases. The Fortran implementation of this EOS is publicly available in the Strasbourg
astronomical Data Center (CDS)1.
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Figure 2.6.: Supercritical EOS comparison for four different constant temperatures: 650, 1750, 3000
and 6000 K. Green triangles indicate when DZ06 starts to depart noticeably from the other two EOS,
whereas grey squares mark the pressure and density at which IAPWS-95 and M19 begin to differ
significantly.

1http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/621/A128
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Figure 2.6 shows a comparison of the three EOSs for four different constant temperatures. At
T = 650 K (upper left panel), where all EOSs are within their temperature validity range, and
experimental data is available up to 1 GPa, we observe that the DZ06 EOS starts to deviate noticeably
from the other two EOS at a pressure of ∼27 GPa. This is close to the maximum validity pressure
established by Duan et al. (1996), which is 35 GPa. In contrast, the IAPWS-95 and M19 are in good
agreement up to 100 GPa throughout the whole temperature range. We do not have experimental
data available at T = 1750 K, although all three EOSs are within their validity or extrapolation range,
maintaining the maximum pressure at which they agree well. Nonetheless, at T = 3000 K the DZ06
EOS is not valid, and starts to differ from the other two EOS at a pressure of 14 GPa. Finally, at T =
6000 K only the M19 EOS is still applicable, which agrees well with the IAPWS-95 EOS up to ∼ 140
GPa, while DZ06 starts showing a significant disagreement at pressures above 1 to 3 GPa.

2.2.2. Grüneisen parameter
As seen in Eq. 2.5, the Grüneisen parameter depends on the derivative of the pressure as a function
of energy. For each EOS formulation, the dependence of the pressure on the internal energy
is different. Therefore, in the following subsections I describe the calculation of the Grüneisen
parameter for the IAPWS-95 and M19 formulations. Duan and Zhang (2006) do not provide the
relation between pressure and internal energy, only its relation to the density and temperature.

2.2.2.1. IAPWS-95 formulation

The internal energy per unit volume is u = E/V , which is related to the Grüneisen parameter as:

γ=V

(
∂p

∂u

)
V

(
∂u

∂E

)
V
=V

(
∂p

∂u

1

V

)
V
=

(
∂p

∂u

)
V

(2.30)

We can decompose the partial derivative of the pressure with respect to u in two terms, knowing
that p = p(ρ,T ):

∂p

∂u
= ∂p

∂T

∂T

∂u
+ ∂p

∂ρ

∂ρ

∂u
(2.31)

As indicated in Eqs. 2.5 and 2.30, the partial derivative that defines the Grüneisen parameter is
performed at constant volume. Mass is also constant due to the mass conservation principle, which
together with constant volume yields a constant density. Therefore, the derivative of the density is
equal to zero, resulting in:

γ=
(
∂p

∂u

)
V
=

(
∂p

∂T

)
V

(
∂T

∂u

)
V

(2.32)

In the IAPWS-95 formulation, the pressure and the internal energy are defined as functions of the
Helmholtz free energy f (see Eq. 2.9):

p = ρ2
(
∂ f

∂ρ

)
T

(2.33)

u = f −T

(
∂ f

∂T

)
ρ

(2.34)
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The partial derivatives in Eq. 2.32 can then be calculated as functions of the Helmholtz free energy
by deriving Eqs. 2.33 and 2.34:

∂p

∂T
= ρ2 ∂

∂T

[(
∂ f

∂ρ

)
T

]
(2.35)

∂u

∂T
= ∂ f

∂T
−

[(
∂ f

∂T

)
ρ

+T
∂

∂T

(
∂ f

∂T

)
ρ

]
=−T

(
∂2 f

∂T 2

)
ρ

(2.36)

We therefore need the derivative of the Helmholtz free energy with respect to the density. For this,
we derive Eq. 2.9:

∂ f

∂ρ
= RT

(
∂φ0

∂ρ
+ ∂φr

∂ρ

)
= RT

ρc

(
φ0
δ+φr

δ

)
(2.37)

since
∂φ0

∂ρ
= ∂φ0

∂δ

∂δ

∂ρ
= φ0

δ

ρc
and

∂φr

∂ρ
= ∂φr

∂δ

∂δ

∂ρ
= φr

δ

ρc
.

See immediately after Eq. 2.9 for the definition of δ and the density at the critical point of water.
φr
δ

was previously defined as well in Eqs. 2.11 to 2.20.
We proceed to calculate the derivative of the Helmholtz free energy with respect to the tempera-

ture by differentiating Eq. 2.9:

∂ f

∂T
= R

(
φ0 +φr )+RT

(
∂φ0

∂T
+ ∂φr

∂T

)
(2.38)

We recall that the ideal-gas and residual terms of f depend on T via τ, so
∂φ0

∂T
= ∂φ0

∂τ

∂τ

∂T
= −Tc

T 2
φ0
τ

and
∂φr

∂T
= ∂φr

∂τ

∂τ

∂T
= −Tc

T 2
φr
τ.

We substitute these expressions in Eq. 2.38:

∂ f

∂T
= R

(
φ0 +φr )−Rτ

(
φ0
τ+φr

τ

)
(2.39)

We differentiate Eq. 2.37 to obtain the second partial derivative of the Helmholtz free energy with
respect to the temperature and the density, which is necessary for Eq. 2.35:

∂

∂T

[
∂ f

∂ρ

]
= ∂

∂T

[
RT

ρc

(
φ0
δ+φr

δ

)]= R

ρc

(
φ0
δ+φr

δ

)+ RT

ρc

(−Tc

T 2

)(
φ0
δτ+φr

δτ

)
(2.40)

By definition of φ0 in Wagner and Pruß (2002), the second partial derivatives of the ideal-gas term
are zero, φ0

τδ
=φ0

δτ
= 0. Consequently, Eq. 2.40 is simplified as:

∂

∂T

(
∂ f

∂ρ

)
T
= R

ρc

(
φ0
δ+φr

δ−τφr
δτ

)
(2.41)

The second derivative of the Helmholtz free energy with respect to the temperature is calculated
by deriving Eq. 2.39:

∂2 f

∂T 2
= R

(
φ0
τ+φr

τ

)(−Tc

T 2

)
−

[
R

(−Tc

T 2

)(
φ0
τ+φr

τ

)+Rτ

(−Tc

T 2

)(
φ0
ττ+φr

ττ

)]=
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= Rτ2

T

(
φ0
ττ+φr

ττ

)
(2.42)

The isochoric heat capacity, cv , can be defined as a function of the partial derivatives of φ (see
Table 3 in Wagner and Pruß 2002):

cv (δ,τ)

R
=−τ2 (

φ0
ττ+φr

ττ

)
(2.43)

If we substitute Eq. 2.43 in Eq. 2.42, we obtain:

∂2 f

∂T 2
=−cv

T
(2.44)

We finally have the partial derivatives of the Helmholtz free energy necessary to calculate the
partial derivatives of the pressure and the internal energy. We substitute Eq. 2.40 in Eq. 2.35:

∂p

∂T
= ρ2 R

ρc

[
φ0
δ+φr

δ−τφr
δτ

]
(2.45)

Similarly, with Eqs. 2.44 and 2.36:

∂u

∂T
=−T

(cv

T

)
= cv (2.46)

We substitute Eqs. 2.45 and 2.46 in Eq. 2.32 to express the Grüneisen parameter as a function of
the Helmholtz free energy:

γ= ρ2 R

ρc

[
φ0
δ+φr

δ−τφr
δτ

] 1

cv
(2.47)

This expression can be further simplified by using the definitions of φ0
δ

and φr
δ

. The derivative of
the ideal-gas term with respect to δ is computed as φ0

δ
= 1/δ (Wagner and Pruß 2002). Thus, the

sum of the two derivatives is (see Eq. 2.10):

φ0
δ+φr

δ =
1

δ
+φr

δ =
1

δ

(
1+δφr

δ

)= 1

δ

p

ρRT
(2.48)

Eventually, substituting Eq. 2.48 in Eq. 2.47 yields:

γ= R

cv

(
p(ρ,T )

ρRT
−τδφr

δτ

)
(2.49)

The pressure, p(ρ,T ), is obtained with the EOS (see Section 2.2.1). The other three partial
derivatives necessary for the calculation of the Grüneisen parameter according to Eq. 2.49 are φ0

ττ,
φr
ττ and φr

δτ
. These are calculated as a function of the coefficients tabulated in Wagner and Pruß

(2002):

φ0
ττ =−n0

3/τ2 −
8∑

i=4
n0

i

(
γ0

i

)2
e−γ0

i τ
(
1−e−γ0

i τ
)−2

(2.50)

Similarly to φr
δ

(Eq. 2.11), φr
ττ and φr

δτ
are expressed as the sum of four terms each:

φr
ττ =φr

ττ,1 +φr
ττ,2 +φr

ττ,3 +φr
ττ,4 (2.51)
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φr
δτ =φr

δτ,1 +φr
δτ,2 +φr

δτ,3 +φr
δτ,4 (2.52)

These terms are computed as:

φr
ττ,1 =

7∑
i=1

ni ti (ti −1)δdiτti−2 (2.53)

φr
ττ,2 =

51∑
i=8

ni ti (ti −1)δdiτti−2e−δci (2.54)

φr
ττ,3 =

54∑
i=52

niδ
diτti e−αi (δ−εi )2−βi (τ−γi )2

[(
ti

τ
−2βi (τ−γi )

)2

− ti

τ2
−2βi

]
(2.55)

φr
ττ,4 =

56∑
i=55

niδ

[
∂2∆bi

∂τ2
Ψ+2

∂∆bi

∂τ

∂Ψ

∂τ
+∆bi

∂2Ψ

∂τ2

]
(2.56)

φr
δτ,1 =

7∑
i=1

ni di tiδ
di−1τti−1 (2.57)

φr
δτ,2 =

51∑
i=8

ni tiδ
di−1τti−1 (

di − ciδ
ci

)
e−δci (2.58)

φr
δτ,3 =

54∑
i=52

niδ
diτti e−αi (δ−εi )2−βi (τ−γi )2

[
di

δ
−αi (δ−εi )

][
ti

τ
−2βi (τ−γi )

]
(2.59)

φr
δτ,4 =

56∑
i=55

ni

[
∆bi

(
∂Ψ

∂τ
+δ ∂

2Ψ

∂δ∂τ

)
+δ∂∆

bi

∂δ

∂Ψ

∂τ
+ ∂∆bi

∂τ

(
Ψ+δ∂Ψ

∂δ

)
+ ∂2∆bi

∂δ∂τ
δΨ

]
(2.60)

The functions ∆ andΨ and their first partial derivatives with respect to δ were presented in Eqs.
2.17 to 2.19. The other first and second partial derivatives necessary for the calculation of the
Grüneisen parameter are:

∂∆bi

∂τ
=−2θbi∆

bi−1 (2.61)

∂2∆bi

∂τ2
= 2bi∆

bi−1 +4θ2bi (bi −1)∆bi−2 (2.62)

∂2∆bi

∂δ∂τ
=−Ai bi

2

βi
∆bi−1 [

(δ−1)2] 1

2βi
−1

−2θbi (bi −1)∆bi−2∂∆

∂δ
(2.63)

∂Ψ

∂τ
=−2Di (τ−1)Ψ (2.64)

∂2Ψ

∂τ2
= {

2Di (τ−1)2 −1
}

2DiΨ (2.65)

∂2Ψ

∂δ∂τ
= 4Ci Di (δ−1)(τ−1)Ψ (2.66)

31



2. Interior model – 2.2. Supercritical water

2.2.2.2. Mazevet formulation

The Fortran subroutine made available by Mazevet et al. (2019) provides both the pressure and the
internal energy per unit volume as functions of the temperature and the density. To calculate the
Grüneisen parameter at a given temperature T and density ρ, we define two values T1 = T −∆/2
and T2 = T +∆/2, where ∆ is a constant value small enough to allow us to calculate an infinitesimal
increase or decrease of the temperature. The Grüneisen parameter is then computed as:

γ(T,ρ) =
(
∂p

∂u

)
V
= p(T2,ρ)−p(T1,ρ)

u(T2,ρ)−u(T1,ρ)
(2.67)

Fig. 2.7 shows a comparison of the Grüneisen parameter calculated with the IAPWS-95 and M19
formulations for four temperatures. At T = 650 K, which is in the proximity of the critical point of
water, both formulations present non-monotonic or asymptotic behaviours. In the case of the M19
formulation, the range of densities at which the non-monotonic behaviour occurs is close to the
ice VII and ice X phases, where this formulation cannot be applied (Mazevet et al. 2019). For the
IAPWS-95, the asymptotic behaviour appears outside of its extrapolation range, at ρ > 3000 kg/m3.
At higher temperatures, the Grüneisen parameter in the M19 formulation increases monotonically
with increasing density.
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Figure 2.7.: Grüneisen parameter comparison for four different constant temperatures: 650, 1750,
3000 and 6000 K. Grey dashed-dotted lines and shaded areas mark the densities at which the IAPWS-
95 formulation is outside of its extrapolation validity range.
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2. Interior model – 2.3. Mass-radius relations

Fig. 2.8 shows the temperature profile up to the highest pressures reached in the planetary mass
regime we consider (up to 20 M⊕). We assume three different equilibrium temperatures for both
Grüneisen parameter formulations. We can see that the IAPWS-95 profile is more steep than that
of the M19 formulation. This is expected from Fig. 2.7, where γ in the IAPWS-95 formulation is
higher than in M19 at high temperatures (T ≥ 1750 K) within its extrapolation range. Therefore,
the IAPWS-95 formulation of the Grüneisen parameter will produce warmer interiors at a similar
pressure compared to the M19 formulation.

200 400 1000 2000 4000 10000 20000
Temperature [K]

102

104

106

108

1010

1012

Pr
es

su
re

 [P
a]

Supercritical

Ice VII

Liquid

Vapor

IAPWS-95
Teq = 1200 K
Teq = 650 K
Teq = 300 K
IAPWS-95 extrapol.
M19 plasma

Figure 2.8.: Water phase diagram with adiabatic profiles of IAPWS-95 (solid) and M19 (dashed)
formulations for three different equilibrium temperatures: Teq = 1200 K (red), 650 K (yellow) and
300 K (blue). We assumed a theoretical 100% water composition, for a planet of M = 15 M⊕. The
temperature-pressure profiles of the atmosphere calculated by the model in Marcq et al. (2017)
are also shown (dotted). The green shaded area indicates the extrapolation range of the IAPWS-
95 formulation, whereas the magenta shaded area marks the plasma validity region of the M19
formulation.

2.3. Mass-radius relations
Fig. 2.9 (top panel) shows a comparison of the mass-radius relations of the three formulations for
four different compositions. In the case of the DZ06 EOS, we consider the IAPWS-95 prescription of
the Grüneisen parameter described in Sect. 2.2.2.1, since Duan and Zhang (2006) do not provide the
internal energy as a function of the density and temperature. We can see that in comparison with
M19, who presents the broadest validity region of the three, the IAPWS-95 and DZ06 obtain higher
total radii for a similar mass and composition. This overestimation of the radius occurs because
for a given pressure and constant temperature, the IAPWS-95 and DZ06 EOSs underestimate the
density (see Fig. 2.6), which yields more extended hydrospheres.

We calculate the absolute difference between these two formulations and M19:
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2. Interior model – 2.3. Mass-radius relations

∆RI APW S−95/D Z 06 = RI APW S−95/D Z 06 −RM19 (2.68)
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Figure 2.9.: Top panel: Mass-radius relationships for supercritical water planets with three different
formulations: IAPWS-95 (squares), Duan and Zhang (2006) (DZ06, triangles) and Mazevet et al.
(2019) (M19, circles). We assume a core composition of 100% mantle, and an equilibrium tempera-
ture of 1200 K. The atmospheric contribution to the total radius has been calculated with the model
from Marcq et al. (2017), as described in Acuña et al. (2021) and Chapter 3. Bottom panel: Absolute
difference (see text) between the IAPWS-95 (squares) and DZ06 (triangles) formulation and M19 as
a function of the planetary mass.

∆RD Z 06 is always greater than ∆RI APW S−95 (see Fig. 2.9, bottom panel), which is due to the DZ06
EOS having a greater difference with the M19 EOS for the same density and temperature than the
IAPWS-95 EOS. The ∆R of both formulations increases with increasing WMF. Assuming that the
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2. Interior model – 2.3. Mass-radius relations

typical uncertainty in radius for a low-mass planet is ∆R ≃ 0.1 R⊕, the IAPWS-95 exceeds this limit
in absolute difference for planets whose WMF ≥ 20%, whereas DZ06 presents a difference greater
than this value at WMF = 10%. The relative differences to the total planetary radius are between 5%
and 20%. This is in agreement with the results of Aguichine et al. (2021), who also found that the
IAPWS-95 and DZ06 formulations overestimate the total planetary radius, being this overestimation
greater for higher water mass fractions. We can conclude that the total radius of water-dominated
planets is sensitive to the choice of the EOS and adiabatic profile formulations. For this reason, it is
necessary to take into account a formulation whose validity range includes the interior conditions
of low-mass planets, which in our case is Mazevet et al. (2019).
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3. Interior-atmosphere coupling

Highly-irradiated planets have a significant part of their radius constituted by their envelope. A
complete water layer is comprised of an upper low-pressure atmosphere, and a high-pressure
water layer, where the supercritical phase is reached. The thickness of the upper atmosphere
depends on the temperature profile, since steam will tend to expand more at higher temperatures.
The supercritical water layer underneath will also expand if the temperature at the bottom of
the upper atmosphere is high too. Some interior structure models of volatile-rich planets have
assumed isothermal upper atmospheric profiles with convection but with a simple implementation
of radiative transfer (Dorn et al. 2017, 2018; Zeng et al. 2019; Thomas and Madhusudhan 2016).
Nonetheless, radiative transfer is necessary in interior models to compute self-consistently the
planetary energy balance and its effect on the transit radius (Nettelmann et al. 2011). Turbet et al.
(2019) found that when considering radiative transfer, the atmosphere of highly-irradiated planets
is expanded compared to their less irradiated counterparts. This effect, named runaway greenhouse
radius inflation effect, is due to an increase in the atmospheric temperature as a function of altitude
as well as an increase in atmospheric thickness.

To include the contribution of an atmosphere to the total radius, I couple our interior model for
supercritical planets (Chapter 2) to a 1D atmosphere model. We first couple the interior model
with the atmospheric model initially presented in Marcq (2012) and Marcq et al. (2017), and further
developed by Pluriel et al. (2019), which considers radiative transfer and adiabatic profiles for water-
dominated atmospheres. Later on, I substitute it by the atmosphere model detailed in Chapter 4.
In the present chapter, I describe the algorithm used to couple self-consistently the interior and
atmosphere models for supercritical planets in Sect. 3.1. In Sect. 3.2, I explain the trends of the
atmospheric parameters (surface temperature, thickness, mass and Bond albedo) with surface
pressure.

3.1. Coupling algorithm
Within our coupled interior-atmosphere model, if the surface pressure is below the 300 bar level, the
atmosphere and the interior are coupled at the atmosphere-mantle interface and water is always in
gaseous phase. If the surface pressure is above 300 bar, the atmosphere and the interior models are
coupled at this pressure value. Underneath the upper atmosphere, a convective supercritical water
layer extends down to the mantle. We choose the 300 bar pressure level to couple the interior and
the atmosphere to be sufficiently close to the critical point of water (Pcr i t = 220 bar). This prevents
the atmospheric model from taking over pressures where convection dominates over radiative
transfer. The pressure at the top of the atmosphere corresponds to the observable transiting radius,
which is P = 20 mbar (Grimm et al. 2018; Mousis et al. 2020).

The output parameters of the atmospheric model are the outgoing longwave radiation (OLR),
Bond albedo, and atmospheric thickness and mass. The OLR represents the emitted energy in
infrared (IR), while the Bond albedo corresponds to the percentage of light reflected by the planet
coming from its host star. The input variables are the bulk mass and radius, and the temperature
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3. Interior-atmosphere coupling – 3.1. Coupling algorithm

at the bottom of the atmosphere. We define the bulk mass and radius, Rbulk and Mbulk , as the
mass and radius comprised from the center of the planet, up to the bottom of the atmosphere.
In our interior-atmosphere coupling, this level corresponds to the atmosphere-mantle interface
for planets whose surface pressure is less than 300 bar, whereas for planets with more massive
envelopes, this level corresponds to the top of the interior supercritical layer. Both the OLR and the
Bond albedo are necessary to determine if an atmosphere is in radiative-convective equilibrium. If
this is the case, the OLR, which represents the emitted energy in the infrared (IR), is equal to the
radiation absorbed by the planet from its host star, Fabs . This is calculated as:

Fabs =σT 4
eq (3.1)

where σ = 5.67×10−8 W m−2 K−4 is the Stefan-Boltzmann constant, and Teq is the equilibrium
temperature.
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Figure 3.1.: Top panel: OLR (dotted) and absorbed flux (solid) for a planet of Mbulk = 5 M⊕ and
Rbulk = 1 R⊕ at different equilibrium temperatures: 300 K, 600 K and 1200 K. The square and
triangle indicate the base temperature and OLR at which the atmosphere is in radiative-convective
equilibrium for Teq = 600 and 1200 K, respectively. We consider a water-dominated atmospheric
composition and a base pressure of 300 bar. Bottom panel: Bond albedo for a planet with Mbulk = 5
M⊕ and Rbulk = 1 R⊕. We assumed a Sun-like star with T⋆ = 5777 K. The square and triangle mark
the base temperature and Bond albedo at which radiative-convective equilibirum is reached.
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3. Interior-atmosphere coupling – 3.1. Coupling algorithm

The planet’s equilibrium temperature, Teq , is defined as:

Teq = (1− AB )0.25
(

R⋆
2ad

)0.5

T⋆ (3.2)

where AB is the Bond albedo, ad is the planetary semi-major axis, and R⋆ and T⋆ are the host stellar
radius and effective temperature, respectively.

Given two certain values of the bulk mass and radius, the atmospheric model obtains the OLR
and Bond albedo as functions of the temperature at the bottom of the atmosphere, Tbase . We solve
for radiative-convective equilibrium by finding the temperature at which the following function, f ,
is zero with a root-finding method (in our case, the bisection method):

f (Tbase ) =OLR(Tbase )−Fabs(AB (Tbase )) = 0 (3.3)

where the absorbed flux depends on Tbase via the Bond albedo as seen in Eqs. 3.1 and 3.2.
Figure 3.1 shows the OLR and absorbed flux of three planets with similar bulk mass and radius,

but three different equilibrium temperatures. We can see that the OLR is independent of the equi-
librium temperature, since it depends on the surface conditions, the bulk mass and radius, and
the composition of the atmosphere; whereas the absorbed flux also depends on the equilibrium
temperature. The base temperatures at which the two warmest planets are in radiative-convective
equilibrium are computed by finding the root of Eq. 3.3 with the bisection method. These tempera-
tures correspond to Tbase = 2469 K and 3529 K for the planets with equilibrium temperatures of 600
K and 1200 K, respectively. For the planet with Teq = 300 K, its absorbed radiation never exceeds its
OLR, which means that this planet would be cooling down. In order to reach radiative-convective
equilibrium, it would be necessary to supply an internal heat flux of Fi nt =OLR −Fabs ≃ 180 W/m2.
Once the base temperature is obtained for a given set of bulk mass and radius and equilibrium
temperature, the atmospheric thickness is calculated as zatm = zatm(Tbase ).

For the same irradiation conditions, we obtain the base temperature, Bond albedo and atmo-
spheric thickness as functions of the bulk mass and radius. This is done with three 2-dimensional
grids (one grid per output parameter of the atmospheric model) where the two dimensions are the
bulk mass and radius. The three parameters are interpolated by bilinear interpolation:

f (M ,R) = 1

(M2 −M1)(R2 −R1)
[ f11(M2 −M)(R2 −R)+ f21(M −M1)(R2 −R)+

+ f12(M2 −M)(R −R1)+ f22(M −M1)(R −R1)] (3.4)

where M and R are the bulk mass and radius at which we want to interpolate. The tabulated
values of the mass and radius are M1, M2, R1 and R2, where M1 < M < M2, and R1 < R < R2. The
constant values fi j are the function we wish to interpolate evaluated at the tabulated masses and
radii: f11 = f (M1,R1), f12 = f (M1,R2), f21 = f (M2,R1) and f22 = f (M2,R2). In our case, the function
f (M ,R) are Tsur f , AB or zatm .

Figure 3.2 shows the corresponding grids for the surface temperature and Bond albedo of a planet
with Teq = 1200 K. The dashed line indicates the limit of surface gravity gsur f = 2 m/s2, which is the
lower limit established by the atmospheric model of Pluriel et al. (2019) for a planet to retain its
atmosphere via hydrostatic equilibrium. We observe that the surface temperature and Bond albedo
are higher for planets whose bulk is less dense (high radius and low mass), and lower for more dense
bulks (low radius and high mass). For low bulk densities, the atmosphere is more extended, which
becomes more optically thick, having a higher reflectance and being less efficient at irradiating the
heat from the warmer inner layers.
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Figure 3.2.: Top panel: Surface temperature as a function of bulk mass and radius for a planet with a
water-dominated atmosphere and Teq = 1200 K in radiative-convective equilibrium. We assume a
base pressure of 300 bar. Bottom panel: Bond albedo as a function of bulk mass and radius for Teq

= 1200 K. We assumed a Sun-like star with T⋆ = 5777 K.

Since the bulk radius, which is an input to the atmospheric model grids, is an output of the
interior model, we first need to compute the base temperature for a set of mass, WMF and CMF
values with an initial guess bulk radius. The recently calculated base temperature is the input
surface temperature for the interior model, which obtains a new bulk radius that can be the input
for the atmospheric model. We iterate this scheme until the bulk radius converges to a constant
value. This is checked by calculating the difference between the new bulk radius, Ri nter i or , and the
guess bulk radius, Rbulk . If this difference is below a given tolerance value, we consider convergence
has been reached. We set this tolerance to a maximum value of 0.02 R⊕, which is usually reached in
1-3 iterations. This iterative algorithm is shown in Fig. 3.3. Once convergence is reached, the total
radius of the planet is calculated as the sum of the atmospheric thickness and the latest output of
the interior model, Ri nter i or . Similarly, the total mass of the planet is updated as the sum of the
bulk mass Mbulk , and the atmospheric mass Matm .
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Rbulk = Rguess, Mbulk 

Root-finding method 

OLR(Tbase) =
Fabs(AB(Tbase))

OLR(Tbase)

Atmosphere model

Tbase
Mbulk, CMF,

WMF
Interior structure modelInterior structure model

Rinterior

Is Rinterior - Rbulk  <
tolerance?

No

Rbulk = Rinterior,
Mbulk

Yes

Rtotal = Rinterior +
zatm(Mbulk, Rinterior,Tbase) 

Mtotal = Mbulk + Matm(Mbulk,
Rinterior,Tbase)

Figure 3.3.: Diagram of the interior-atmosphere coupling algorithm. Tbase denotes the base tem-
perature at the bottom of the atmosphere, while zatm and Matm correspond to the atmospheric
thickness and mass, respectively. Rbulk and Mbulk are the bulk radius and mass, while Rg uess is the
initial of the bulk radius. Ri nter i or refers to the output bulk radius of the interior model in each
iteration. Green boxes indicate the input of the previous step and output of the following one, while
blue boxes corresponds to calculations and models. The yellow box is a conditional operation that
represents a decision (yes/no).
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3. Interior-atmosphere coupling – 3.2. Low surface pressures

3.2. Low surface pressures
In Sect. 3.1, I have always considered that the surface pressure at the interface between the upper
atmosphere and supercritical layer is constant to 300 bar. This makes the coupling relatively
simple, since I only need one grid per atmospheric parameter, such as the ones shown in Fig. 3.2.
However, rocky planets (R < 1.5 R⊕) have densities that are not compatible with the presence of a
massive atmosphere whose surface pressure is 300 bar. In these cases, no supercritical water layer
exists. The pressure at the bottom of the atmosphere is less than 300 bar, and the interior and the
atmosphere are coupled at the interface between the upper atmosphere and the mantle, which
represents the surface of the planet. The atmospheric parameters, such as the emitted flux and the
atmospheric thickness, are dependent on the atmospheric surface pressure, which is not constant.
I describe how the dependence of the atmospheric parameters on the atmospheric surface pressure
is implemented in the context of the interior-atmospheric coupling hereunder.

In the case of a constant surface pressure, I only needed one grid per atmospheric parameter,
adding up to four grids in total: Tsur f , AB , zatm and Matm . Now these exact same parameters need
more than one grid, each for a different surface pressure. I choose to compute the grids for surface
pressures at 1 bar, 10 bar, 100 bar, in addition to the 300 bar grid that I had initially. This means that
instead of four grids, I handle 4 × 4 = 16 grids when the surface pressure is less than 300 bar.

In Fig. 3.4 we show the OLR and absorbed flux of the same atmosphere for different surface pres-
sures, where we can see that the surface temperatures at which the atmospheres are in equilibrium
(dotted lines) are significantly different. The surface temperature increases as the surface pressure
is higher because less massive atmospheres emit more IR radiation than heavier ones, which is due
to decrease of the the opacity as the pressure is lower.
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Figure 3.4.: OLR and absorbed flux as functions of the surface temperature for atmospheres with
different surface pressures (300 bar, 100 bar, 10 bar and 1 bar). We assume a water-dominated
composition, together with the irradiation conditions, bulk mass, and radius of TRAPPIST-1 c
(ad = 0.0158 AU, Mbulk = 1.308 M⊕ and Rbulk = 1.308 R⊕), as provided by Agol et al. (2021).

I parameterize the base temperature and the other atmospheric properties (Bond albedo, thick-
ness and mass) as functions of the base pressure for different pairs of the bulk mass and radius. I
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3. Interior-atmosphere coupling – 3.2. Low surface pressures

show the behaviour of these parameters with surface pressure in Fig. 3.5. The equilibrium surface
temperature and the atmospheric thickness are fitted well by quadratic polynomials of the loga-
rithm of the surface pressure, whereas the atmospheric mass is linear with respect to the pressure
at the bottom of the atmosphere. This linear behaviour is expected, because the atmospheric mass
can be estimated as:

Matm = Pbase 4πR2
bulk

gsur f
(3.5)

where gsur f [m/s2] = 9.8×(Mbulk /R2
bulk ) is the acceleration of gravity on the surface. The bulk mass

and radius are expressed in Earth mass and radius units, respectively. For a given pair of the bulk
mass and radius, Eq. 3.5 becomes a constant value times Pbase , which makes the atmospheric mass
linear with the pressure at the base of the atmosphere.
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Figure 3.5.: Equilibrium surface temperature, atmospheric thickness, mass and Bond albedo as
functions of surface pressure for 4 different pairs of mass and radius. The bulk mass and radius
values are M1 = 1.252 M⊕, M2 = 1.364 M⊕, R1 = 1.085 R⊕ and R2 = 1.109 R⊕, which are the limits of
the 1σ confidence intervals of the mass and radius of TRAPPIST-1 c (Agol et al. 2021).

The Bond albedo has a more complex relationship to the logarithm of Pbase (see Fig. 3.5, bottom
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3. Interior-atmosphere coupling – 3.2. Low surface pressures

right) than the other three atmospheric parameters, which can be fitted with a polynomial of 6th
order. Except for the case of the atmospheric mass, the form of the function used for the fitting of
the other three variables is difficult to determine from first principles, since the calculations of these
parameters are based on a non-ideal water EOS and hydrostatic equilibrum for the thickness; and
radiative transfer for the surface temperature and the Bond albedo. I store the coefficients of the
fitting polynomials for the four variables as functions of different (M ,R) pairs in our low-pressure
atmosphere grids.
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4. Atmospheric model

In Chapter 3, I explained how the interior model is coupled with an atmospheric model to calculate
the total planetary radius and boundary conditions using the data grids generated by the atmo-
spheric model. The interpolation of the atmospheric parameters from these grids requires loading
a significant number of tables, and making assumptions on the behaviour of the parameters. In
addition, this approach cannot generate the emission spectrum simultaneously, which is useful to
assess the observability in emission spectroscopy. These disadvantages motivate me to implement
our own atmospheric model (MSEIRADTRAN) to couple with the interior model, which I describe
in this chapter. In Sect. 4.1, I lay out the numerical scheme of the atmospheric model. In Sect.
4.2, I describe how the pressure-temperature profiles are calculated by MSEIRADTRAN. In Sect.
4.3 to 4.5, I explain how the four contributions to the opacity are taken into account. These are
collision-induced absorption (CIA), the line opacities, which are obtained with the k-correlated
method, and scattering by clouds and gases (Rayleigh scattering). Finally, in Sect. 4.6 I compare
the OLR, Bond albedo and total planetary radius computed with MSEIRADTRAN to reference
atmospheric models.

4.1. Numerical scheme
Our atmospheric model presents a similar numerical structure to that of Marcq et al. (2017), which
is publicly available1. We first propose a pressure-temperature (PT) profile, that consists of a near-
surface, dry convective layer; a wet convective region where condensation takes place, and an
isothermal mesosphere on top. The calculations of the emission spectrum and the Bond albedo are
performed by bands. Marcq et al. (2017) divide the spectrum from 0 to 10100 cm−1 (equivalent to ≥
1 µm in wavelength) in 36 bands to obtain the planetary emission. For each band:

1. Calculate the optical depth. The optical depth in each atmospheric layer is calculated as:

τ= κ ρ ∆z (4.1)

where κ is the opacity in m2/kg, ρ is the mass density in kg/m3, and ∆z is the thickness
of the atmospheric layer in meters (Liou 1980). The total optical depth per layer has four
contributions from different sources: atomic lines, Rayleigh scattering, collision-induced
absorption (CIA) and scattering by clouds:

τtot al = τl i nes +τRaylei g h +τC I A +τcloud s (4.2)

The contributions due to Rayleigh scattering and clouds are parameterized, while the optical
depth caused by CIA is computed with tabulated opacities. Line opacities are obtained with
the k-correlated method, which reproduces accurately line-by-line calculations. The line

1http://marcq.page.latmos.ipsl.fr/radconv1d.html
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4. Atmospheric model – 4.1. Numerical scheme

contribution can also be modelled as a grey opacity. This will be computationally faster than
the k-correlated method, but it yields a less accurate OLR. Once all the contributions to the
optical depth are added, we obtain the total optical depth as a function of pressure or altitude.
This is the input for the radiative transfer (RT) solver DISORT (Stamnes et al. 2017), which
calculates the flux as a function of optical depth.

2. Obtain the upward flux at the top of the atmosphere (TOA). TOA corresponds to the topmost
level in the optical depth (τ<< 1), which means the OLR corresponds to the flux obtained by
DISORT at that level.

3. Store the upward flux at TOA for each band, F ↑
T O A, i , where i is the band number. By doing

this, we obtain the OLR as a function of wavelength, which is the emission spectrum.

4. Finally, the bolometric OLR, F ↑
T O A, bol , is computed by integrating the emission spectrum over

wavelength (Pluriel et al. 2019), which in our case is the total sum of the OLR:

OLR = F ↑
T O A, bol =

∫ ∞

0
F ↑

T O A(ν) dν=
Nband s∑

i=1
F ↑

T O A, i (4.3)

Once the bolometric OLR is obtained, we initiate the calculation of the reflectivity in 30 bands,
from 5 to 0.29 µm, to obtain the Bond albedo. This is done by calculating the optical depth from all
four contributions similar to step 1, and then inputting the optical depth to DISORT to calculate the
reflectivity. The bands for which we calculate both the flux at TOA and the reflectivity (from 1 to
5 µm) cannot have the two quantities calculated simultaneously since DISORT requires different
input settings to calculate them. For the emission, we assume zero illumination from the top of the
atmosphere, as well as an upward flux that forms 90 degrees with the surface of the planet, which
corresponds to a polar angle equal to zero. To obtain the reflectivity, we assume an isotropically-
incident source of radiation at the top of the atmosphere, while turning off all thermal emission
sources. DISORT calculates the reflectivity of the atmosphere as a function of incident beam angle,
which corresponds to the solar zenith angle (SZA). The SZA is the angle that the incident light forms
with the normal of the incident surface. Once we obtain the dependence of the reflectivity with
SZA, we can average it as (Simonelli and Veverka 1988):

AB (ν) = 2
∫ π/2

0
AB (ν, i ) cos(i ) si n(i ) di (4.4)

where i is the SZA, and ν is wavenumber.
After averaging the reflectivity over SZA, we obtain the reflection spectrum, which is the de-

pendence of the albedo as a function of wavenumber. To obtain the bolometric Bond albedo, we
integrate Eq. 4.5:

ABond , bol =
π

∫ ∞
0 AB (ν) Bν(T⋆) dν

σT 4
⋆

(4.5)

where AB (ν) is the reflectivity as a function of wavenumber; Bν(T⋆) is Planck’s function for a
temperature equal to the effective temperature of the host star T⋆, and σ is the Stefan-Boltzmann
constant.
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4.2. Pressure-temperature profile
The thermal structure of the atmosphere is divided in two layers. The near-surface layer is adia-
batic, which means convection takes place, while the layer on top is a mesosphere with constant
temperature. This is set to 200 K, which is representative of the cool temperatures that hot low-
mass planets present in their mesospheres (Lupu et al. 2014; Leconte et al. 2013). In the adiabatic
layer, condensation may take place depending on the value of the pressure compared to the water
saturation pressure. Therefore, we assume an atmosphere with one condensable species, H2O, and
one non-condensable gas, CO2. The adiabatic temperature profile is calculated as:(

∂T

∂P

)
S
≃ ∆T

∆P
= Ti−1 −Ti

Pi−1 −Pi
(4.6)

where the index i specifies the location of each PT point in the atmosphere. The differential element

of the pressure can be expressed as ∆P = Pi ∆ln(P ) because
d l n(P )

dP
∼ ∆ln(P )

∆P
= 1

Pi
.

If we isolate Ti from Eq. 4.6, we obtain:

Ti = Ti−1 −
(
∂T

∂P

)
S

Pi ∆l n(Pi ) (4.7)

The derivative of the temperature with respect to the pressure at constant entropy, (dT /dP )S , is
related to the adiabatic coefficient κad by:

κad (P,T ) =
(
∂ l n(T )

∂ ln(P )

)
S
= P

T

(
∂T

∂P

)
S

(4.8)

If the pressure of water vapour is below the gas saturation pressure, Pv < Psat (T ), or if its temper-
ature is above the temperature of the critical point of water, T > Tcr i t , we are under dry convection
(Marcq 2012; Marcq et al. 2017). We calculate the derivative (dT /dP )S in the dry case as (Marcq
et al. 2017): (

∂T

∂P

)
S, dr y

= ρv T (∂Vv /∂T )P

ρv Cp,v +ρc Cp,c
(4.9)

where ρv and ρc are the densities of water vapour and CO2, respectively; and Cp,v and Cp,c , their
heat capacities. Vv = 1/ρv is the specific volume of water vapour.

The atmospheric model of Marcq et al. (2017) uses the steam tables provided by Haar et al. (1984)
to calculate the density and heat capacity of water vapour. These tables treat water as a non-ideal
gas, although they are not valid for T > 2500 K. Therefore, for higher temperatures, I implement
the use of the tables from Haldemann et al. (2020) to calculate the thermodynamic properties
of water. These tables are a compilation of equations of state (EOS), where each EOS is applied
in its validity region of the water phase diagram. There are two EOSs that are used in the region
relevant for the atmospheres of low-mass, highly-irradiated planets. The first EOS is the IAPWS95
(Wagner and Pruß 2002), whose validity for the high-pressure supercritical regime was explored
in Section 2.2. For lower pressures, such as liquid and cold gas phase, it is a reference EOS since
the experimental data on which this EOS is based extends up to 1273 K. Haldemann et al. (2020)
transition to an EOS valid at low pressures and high temperatures at 1200 K. This second EOS is
the CEA (Chemical Equilibrium with Applications) package (Gordon 1994; McBride 1996). This
package incorporates the effects of single ionisation and thermal dissociation, which are processes
that occur only at high temperatures in gas phase. Figure 4.1 shows the dry adiabatic coefficient
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as a function of pressure and temperature in the region of the water phase diagram relevant for
hot planetary atmospheres. The reduction of the dry adiabatic coefficient at T = 1000 to 2500 K is
due to thermal dissociation, whereas the decrease at higher temperatures (T ≥ 6000 K) is caused by
thermal ionisation (Haldemann et al. 2020).
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Figure 4.1.: Dry water adiabatic coefficient, κ, as a function of pressure and temperature. The region
covers the cold and hot gas phase of water up to pressures close to the critical point.

When the atmospheric pressure reaches the water saturation curve, P = Psat (T ), water vapour
starts to condense out and clouds form. Since the phase change requires energy in the form of latent
heat, the wet adiabatic coefficient is different from the dry adiabatic one (Eq. 4.9). The expression
for the derivative (dT /dP )S in the wet case with CO2 as the only non-condensable gas is (Marcq
et al. 2017):(

∂T

∂P

)
S, wet

= 1

(dPsat /dT )+ρc R/Mc (1+∂ l n(ρv )/∂ ln(T )−∂ l n(αv )/∂ l n(T ))
(4.10)

where Mc is the molecular weight of carbon dioxide, and R is the ideal gas constant. αv is the mixing
ratio of water vapour density relative to CO2, αv = ρv /ρc . Its derivative ∂ ln(αv )/∂ l n(T ) is defined
as (Marcq et al. 2017; Marcq 2012; Kasting 1988):

∂ ln(αv )

∂ ln(T )
= R/Mc (∂ ln(ρv )/∂ l n(T ))−Cv,c −αv (∂sv /∂ l n(T ))

αv (sv − sc )+R/Mc
(4.11)

where sv and sc are the specific entropies of water vapour and liquid water, respectively. Cv,c is
the specific heat capacity at constant volume of CO2. As we treat CO2 as an ideal gas, we can
calculate Cv,c =Cp,c −R/Mc . In this expression and in Eq. 4.9, the specific heat of CO2 is obtained
with Shomate’s equation (Eq. 4.12), whose tabulated coefficients A to E are provided by Chase
(1998). This is part of the NIST (National Institute of Standards and Technology) chemistry webbook
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database2, and it is valid for temperatures up to 6000 K.

Cp,c = A+B T +C T 2 +D T 3 +E/T 2 (4.12)

The thermodynamic properties of water for the wet adiabat are computed with the tables provided
by Haar et al. (1984), since in these conditions of low temperature they are valid.
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Figure 4.2.: PT profiles of a water-dominated atmosphere for surface temperatures Tsur f = 1000,
2000, 3000, 4000, 4400 K. Black solid lines are profiles calculated with the EOS used in Marcq et al.
(2017), while dashed lines indicates the PT profiles obtained with the MSEIRADTRAN.

Once the temperature profile is calculated as a function of pressure, the gravitational accelera-
tion is computed with Gauss’ law for gravity. The gravitational acceleration at the bottom of the
atmosphere can be calculated as:

g0 = g⊕
MT

R2
bulk

(4.13)

where g⊕ = 9.8 m/s2, MT is the total mass of the planet in Earth mass units, and Rbulk is the bulk
radius of the planet in Earth radius units, from the center of the planet to the planetary surface. The
gravitational acceleration at an altitude zi can then be expressed as:

gi ≃ g⊕
MT

(Rbulk + zi )2
= g0

R2
bulk

(Rbulk + zi )2
(4.14)

where the mass enclosed from the center of the planet to the radius Ri = Rbulk + zi is approximated
as Mi = MT +Matm(zi ) ≃ MT . This approximation is based on the typical value of the atmospheric

2https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Mask=1
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mass for surface pressures below 300 bar, Matm ≤ 10−3M⊕, which is negligible compared to the
total mass of the planet.

Finally, we can determine the altitude as a function of pressure under the assumption of hydro-
static equilibrium:

dP

d z
≃ ∆P

∆z
=−ρg (4.15)

If we isolate zi from ∆z = zi−1 − zi in Eq. 4.15, the altitude for a given point in the 1D grid is
obtained as:

zi = zi−1 + Pi ∆ln(P )

gi ρtot al ,i
(4.16)

where ρtot al ,i is the total mass density at altitude zi , ρtot al ,i = ρv,i +ρc,i .
Fig. 4.2 displays the PT profiles calculated with MSEIRADTRAN, and the model from Marcq et al.

(2017), which uses the EOS and tables from Haar et al. (1984) for all temperatures, even those above
2500 K. It can be seen that the first two profiles, with surface temperatures of 1000 K and 2000 K,
agree very well between the two models. Nonetheless, the profiles start to differ significantly as the
surface temperatures increases, because the EOS used by Marcq et al. (2017) is out of its validity
range.

4.3. Collision-induced absorption
In Eq. 4.2, one of the contributions to the total optical depth is collision-induced absorption (CIA).
CIA, or continuum absorption features, are produced by inelastic collisions of the molecules in a gas.
These collisions might induce quantum transitions that absorb and emit energy, which contributes
to the line transition opacity. CIA absorption is particularly important in dense gases, such as steam
and CO2 at high pressures, specially if the line opacity is weak (Pluriel et al. 2019). CIA opacities are
usually provided in tabulated data that can be interpolated in wavelength and temperature. I use
CIA absorption data for H2O-CO2 and H2O-H2O provided by Ma and Tipping (1992) and Tran et al.
(2018)3, respectively. We can see in Fig. 4.3 that the highest contribution to the opacity comes from
H2O-H2O CIA in a water-dominated atmosphere, followed by H2O-CO2 and CO2-CO2, which is in
agreement with Turbet et al. (2017) (see their Figure 1).

CO2-CO2 CIA opacities are read from a look-up table obtained by Bézard et al. (2011) and Marcq
et al. (2008), which is also used in the atmospheric model by Marcq et al. (2017). Our H2O-H2O
CIA table covers the complete spectral range where we calculate both our emission and reflection
spectra, while the H2O-CO2 CIA table covers the bands with wavelength ≥ 1 µm, which corresponds
to the bands necessary for the emission spectrum only. For the bands whose wavelength is outside
the spectral range of the CIA table, we assume a constant CIA opacity value equal to the opacity at
the limit band of the table. This means that we assume the CIA opacity value at 1 µm for the visible
bands when we calculate the reflection spectrum.

At each point of the 1D PT grid, I calculate the contribution to the optical depth by CIA, which is
τC I A in Eq. 4.2. This optical depth is constituted of three contributions, which correspond to the
three CIA pairs that are present in an atmosphere composed of H2O and CO2:

τC I A = τW W +τCC +τCW (4.17)

3https://www.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/continuum_data/
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where τW W is CIA absorption due to H2O-H2O collisions, τCC corresponds to CO2-CO2 interactions,
and τCW to H2O-CO2.
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Figure 4.3.: CIA opacities for a water-dominated atmosphere with 1% CO2, for T = 230 K and P = 1
atm.

The opacities due to each type of CIA are read from their respective tables. Consecutively, the
optical depth of each contribution is calculated with Eq. 4.1, or its alternative form depending on
the original units of the CIA data tables. For instance, to calculate τCC we use this alternative form
of Eq. 4.1:

τCC = nc Cc ω (4.18)

where nc is the number density of CO2 in the middle of the atmospheric layer, ω is the column
abundance of the gas, and Cc is the opacity provided by the opacity table. For CO2, we convert the
mass density in kg/m3, ρc , into number density in molecules/cm3, nc :

nc = ρc 10−3 1

44 g /mol
6.022×1023 = 1.3686×1019 ρc (4.19)

The column abundance of the gas, ω, represents the thickness of an equivalent atmospheric
column of standard pressure and temperature. It is calculated as (Sanchez-Lavega 2011):

ω= 1

L0
nc ∆z (4.20)

where L0 = 2.687×1019 cm−3 is Loschmidt’s constant, nc is the number density calculated in Eq.
4.19. The thickness of the atmospheric layer, ∆z, must be in cm. The final units of ω are cm-amagat.

50



4. Atmospheric model – 4.3. Collision-induced absorption

Finally, Cc is provided by the opacity table in cm−1 amagat−2 units4, but it needs to be expressed
in cm2/molecule to be consistent with the units of ω and n in Eq. 4.18. For that, we convert Cc from
cm−1 amagat−2 to cm5/molecule2 (Richard et al. 2012):

Cc [cm5/molecule2] = 1.385×10−39 Cc [cm−1/amag at 2] (4.21)

Then we must convert the opacity from cm5/molecule2 to cm2/molecule:

Cc [cm2/molecule] = 2.687×1019 Cc [cm5/molecule2] (4.22)

where the constant factor comes from the definition of amagat in molecules/cm3 units (Richard
et al. 2012).

For τW W and τCW , the tables provide the opacity in cm−2 molecule−1 atm−1. To obtain the
product κ×ρ in Eq. 4.1, we convert the opacity, Ci j :

(κ×ρ)i j [cm−1] = Ci j

1.013×106

Pi P j

T kB
(4.23)

where i j is the pair H2O-H2O or H2O-CO2. The pressures, temperature and the Boltzmann constant,
kB = 1.38×10−16 cm2 g/s2 K, are in cgs units. The factor 1.013 ×106 is the equivalence of 1 atm in
cgs units.
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Figure 4.4.: Optical depth of the three collision-induced absorption (CIA) contributions for three
spectral windows; one in the optical (left panel), one in the near IR (middle panel), and one in the
far IR (right panel). The total optical depth for the same atmosphere obtained with the model by
Marcq et al. (2017) is also shown for comparison in the IR windows.

The resulting optical depth for one spectral band in the optical and two in the IR are shown in
Figure 4.4, where we can see that the total CIA optical depth agrees well between our model and
Marcq et al. (2017) for the IR bins. We also obtain the expected result that for a given point in the PT
grid, τCC < τCW < τW W (see Fig. 4.3), with the exception of the optical window at high pressures,
where τCW > τW W . This is because the value of the H2O-CO2 opacity in the visible is set to the limit
of the opacity table, which is at λ= 14 µm (ν= 104 cm−1 in Fig. 4.3). This has a negligible effect in
our calculation of the Bond albedo.

4The amagat is a unit of number density, and it is defined as the number of molecules per unit volume of an ideal gas
at a pressure of 1 atm, and a temperature of 0◦C.
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4.4. K-correlated method

4.4.1. Formalism
In this section I explain how the term τl i nes in Eq. 4.1 is obtained. To determine how opaque or
transparent is the atmosphere within a spectral window, we need to integrate the line opacity over
wavelength. In Figure 4.5 we can see that the opacity is a non-monotonic function that varies very
rapidly with wavelength, making its integration computationally expensive. One way to reduce this
computational effort is to integrate the opacity over its cumulative probability distribution, which
is a monotonic and smooth function (Fig. 4.5, middle panel). The cumulative distribution function
of the opacity, G(X = κ), expresses the probability of finding an opacity value that is less or equal
to κ. This means that it is zero if κ is the minimum, G(X = κmi n) = 0, and 1 if κ is the maximum,
G(X = κmax) = 1. The inverse of the cumulative distribution function of the opacity is κ(G), which
is known as the k-distribution function (Fig. 4.5, left panel). This function can be discretized into
the k-coefficients, κi . These are defined as the values of the continuous k-distribution function
evaluated at specific probabilities, known as G-points (Gi ), so κi = κ(G =Gi ). In addition to G , the
k-coefficients are also dependent on spectral band, pressure and temperature, which is explicitly
expressed with the notation κb

i (P,T ).

0.45 0.50 0.55 0.60
Wavelength [ m]

0

2

4

6

8

 [1
0

3
×

 c
m

2  g
1 ]

Opacity

0 2 4 6 8
 [10 3 ×  cm2 g 1]

0.0

0.2

0.4

0.6

0.8

1.0

G
(

)

Cumulative distribution function

0.0 0.2 0.4 0.6 0.8 1.0
G

0

2

4

6

8

 [1
0

3
×

 c
m

2  g
1 ]

k-distribution

Figure 4.5.: Right panel: opacity as a function of wavelength for water vapor at 2550 K of temperature
and 215 bar of pressure. The spectral band shown here ranges from 0.45 to 0.60 µm. Middle panel:
Cumulative distribution function of the opacity, G(κ), for the same spectral band, pressure and
temperature in the right panel. Left panel: Inverse of the cumulative distribution function displayed
in the middle panel.

If we consider that the optical depth - or spectral transmittance, related to the optical depth
with τ=−ln (Tν) - is independent of the order of the opacities, κ, within a spectral band, we can
replace wavenumber integration by integration in κ-space. Moreover, given the properties of the
k-distribution function of κ, we can derive an analytic expression for the cumulative probability
function of the opacity, G(κ) (Liou 1980). This function is monotonically increasing and smooth in
κ-space, so we can calculate the integral necessary for the spectral transmittance with a Laplace-
Gaussian quadrature. Hence, the integration in G-space substitutes the integration in wavenumber
(ν-space), since we assume that the atmospheric layers are homogeneous. This is obtained as a
finite number of exponential sums:
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T b(m) =
∫ 1

0
e−κν(G) m dG ≃

NG∑
i=1

e−κb
i m(P,T ) wi (4.24)

where κi are the values of the opacity at the G-points Gi , m is the column density of the atmospheric
level, and wi are the associated Legendre-Gaussian weights. The Legendre-Gaussian weights are
defined as:

wi = 2(
1− y2

i

)
P ′

NG

(
yi

)2 (4.25)

where yi is the i th root of the Legendre polynomial of order NG , and P ′
NG

is the derivative of this
polynomial (Malik et al. 2017). The G-points are fixed by the roots of the Legendre polynomial:

Gi = (1+ yi )

2
(4.26)

The transmittance is different for each spectral band. We can calculate the line optical depth in
each band as τb =−ln

(
T b

)
(Malik et al. 2017; Leconte 2021; Sanchez-Lavega 2011). Then, we can

input this optical depth to the RT solver, and obtain the upward flux at TOA in each spectral bin,
F ↑

T O A, b . I will refer to this as the uncorrelated-k approach or method henceforth.
In each atmospheric layer, the pressure and temperature are considered constant. Under this

condition and within each spectral band, we can exchange wavenumber with G (Mollière 2017).
Then, we can solve the RT equations, and obtain the flux at TOA. Consequently, we integrate the
upward flux over G to obtain the OLR within each band:

F ↑
T O A, b =

∫ 1

0
F b(G) dG =

NG∑
i=1

F b
Gi
∆Gi (4.27)

where F b
Gi

is the flux at TOA calculated by the RT solver, which has as input the optical depth

τb
Gi

= κb
Gi

m(P,T ). ∆Gi are the widths of the bins in G-space. This is the k-correlated method that
Marcq et al. (2017) and Malik et al. (2017) use.

In both methods, the column density is calculated in each atmospheric layer as:

m = (nv +nc ) ∆z (4.28)

where nv and nc are the number densities of water and CO2, respectively. These are computed from
the mass density as nv,c = ρv,c NA/MWv,c , where NA is Avogadro’s number, and MW the molecular
weight. ∆z was defined in Sect. 4.2 as the increase in altitude within an atmospheric layer.

Consequently, in the atmospheric model we iterate over two variables:

• over G-points, to obtain the FGi values within each band, and then sum all the contributions

to yield the TOA flux F ↑
T O A, b .

• over bands, to add the upward TOA fluxes of all bands to obtain the bolometric OLR.

The difference between the uncorrelated-k and the correlated-k methods is where the iteration
over G-points is located in the algorithm. In the k-correlated method, the spectral lines are assumed
to be correlated from an atmospheric layer to the next one, making it necessary to propagate the
fluxes through the atmosphere for all g-points before performing the integral. Figure 4.6 shows a
schematic of these sums over G-points and bands to obtain the total integrated OLR for -̨correlated
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method. As it can be seen in Fig. 4.6, the sum over G-points ends after the RT solver outputs F
b j

Gi
.

However, in the uncorrelated-k approach, the iteration over G-points ends before inputting the
optical depth to the RT solver. The final line optical depth that is the input for the RT solver in the
k-uncorrelated method assumes that all the contributions from the G-points are included before
the sum in Eq. 4.24. I consider the uncorrelated-k method to compute the boundary conditions
for the interior model since it it faster than the k-correlated one. This is because the RT solver is
the most time-consuming subroutine in the atmospheric model. In the former case, it takes 0.22
seconds per spectral band to obtain the OLR, while in the latter, the time per band is 0.40 seconds,
which is almost as twice as the k-uncorrelated approach. I therefore compare the k-uncorrelated
method to several k-correlated models for its implementation in MSEIRADTRAN.

Figure 4.6.: Algorithm in the atmospheric model to calculate the OLR with the k-correlated method

(see text). τ
b j

scat ter i ng includes the contributions from Rayleigh scattering and clouds.

4.4.2. K-table processing
The k-coefficients are stored in k-tables, which are calculated from an opacity table with the
wavelength-dependent line opacities. Grimm and Heng (2015) provide a database5 of pre-calculated
HELIOS-K output files for different species and line lists. For water and CO2-dominated atmo-
spheres, I need opacities for these two absorber species. The line lists I use are POKAZATEL
(Polyansky et al. 2018) for H2O and HITEMP2010 for CO2 (Rothman et al. 2010). POKAZATEL is the
water line list with the widest validity range in temperature for water in planetary atmospheres,
with a maximum temperature of 5000 K, while HITEMP maximum temperature is 4000 K. Their

5https://chaldene.unibe.ch/data/Opacity3/
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spectral coverage includes the visible and the IR. To obtain the k-tables, the spectral resolution of
the original opacity table is R = 5000, which is the minimum recommended (Malik et al. 2017, 2019).

Figure 4.7 shows the opacities calculated with these line lists for a single (P ,T ) point, as a function
of wavelength. The total opacity is dominated by the contribution of water, because it constitutes
99% of the atmosphere. The contribution of CO2 is only noticeable at approximately 4.5 µm.
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Figure 4.7.: Opacity as function of wavelength for for H2O and CO2. T = 2600 K and P = 200 bar, which
are pressure and temperature conditions easily reached in the warm atmospheres of low-mass
planets. We also show the total opacity of a water-dominated gas with 1% CO2, which is obtained
by weighting the opacities with their respective mass mixing ratios.

I implement two different versions of MSEIRADTRAN: one with a spectral resolution of R =λ/∆λ
= 10, and another one with the native spectral resolution of our k-table, which is R ≃ 200 in the
IR. The former is used to obtain the atmospheric parameters necessary to couple with the interior
model within the MCMC Bayesian framework, since this resolution is sufficient to produce accurate
OLR and Bond albedos fast. The version with higher resolution can be used to generate emission
spectra to assess the observability of planets with telescopes, such as the James Webb Space
Telescope (JWST).

In the low-resolution version of MSEIRADTRAN, the spectral bands are wider than the wavelength
bins of the original HELIOS-K tables. To obtain a k-table with a similar binning as Marcq et al. (2017)
and Pluriel et al. (2019) (see Tables 4.1 and 4.2), I follow the procedure in Leconte (2021) to combine
two spectral bins:

1. Given a (P,T ) point in our table, I show the opacity as a function of G , κ(G) (see Figure 4.8, left
panel) in each bin. I exchange G in the y-axis and κ in the x-axis. Now I define the x-axis, κ j ,
as a logarithmically spaced array that ranges from the minimum value of κ in both bins, to
their maximum value.

2. Then I interpolate the G-points at the points of the array κ j , to obtain G(κ j ) =G j for each of
the bins. Note that if κ j is greater than the κmax of one of the bands, G = 1, since G(κ) is the
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cumulative distribution of the opacity within each bin. Similarly, if κ j is less than the κmi n of
one of the bands, G = 0.

3. I calculate the G-points of the combined band as:

G j , combi ned = ∆νband 1 G j ,band 1

∆νcombi ned
+ ∆νband 2 G j ,band 2

∆νcombi ned
(4.29)

G j , combi ned as a function of κ j can be seen in Figure 4.8 (left panel, black circles). Eq. 4.29
is the particular case of equation 7 in Leconte (2021) for two bins. This procedure can be
extended with as many bins as necessary (N , in Eq. 4.30) to fill the spectral range of the
superbin of the atmospheric model:

G j , combi ned =
N∑

i=1

∆νband i G j ,band i

∆νcombi ned
(4.30)

4. Finally, I interpolate κ j as a function of G , and sample the opacity at the G-points I wish to
use in the atmospheric model.

Steps 1 to 4 are performed for each (P,T ) point in the opacity table.
The red triangles in Fig. 4.8 indicate the G-points at which the opacity is evaluated to obtain

the binning in G-space of the approach of Marcq et al. (2017). To obtain the k-table for the low-
resolution, k-uncorrelated model, I evaluate the opacity at the G-points that correspond to the roots
of the 16th order Legendre polynomial (see Eq. 4.26). Table 4.3 shows the values of the G-points in
both approaches.

0.00 0.25 0.50 0.75 1.00
G

45.5

46.0

46.5

47.0

47.5

48.0

48.5

(G
) [

cm
2 /g

]

46 47 48
(G) [cm2/g]

0.0

0.2

0.4

0.6

0.8

1.0

G

Bin 1
Bin 2
Super bin
G-points

Figure 4.8.: Right: Opacity as a function of G for the two bins that need to be combined. Left: G
as a function of the opacity for the combined bin (black). Red triangles mark the {G ,κ(G)} points
where the combined opacities are sampled to have the same G-points as Marcq et al. (2017). In this
example, bin 1 has a spectral coverage from 1.887 to 1.890 µm, while bin 2 covers 1.890 to 1.894 µm.
Consequently, the spectral coverage of the super bin is 1.887 to 1.894 µm.
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# Band νi ni [cm−1] ν f i n [cm−1] λi ni [µm] λ f i n [µm]
1 0 40 ∞ 250
2 40 160 250 62.5
3 160 280 62.5 35.7
4 280 380 35.7 26.3
5 380 500 26.3 20
6 500 582 20 17.2
7 582 600 17.2 16.7
8 600 720 16.7 13.9
9 720 752 13.9 13.3

10 752 800 13.3 12.5
11 800 900 12.5 11.1
12 900 1000 11.1 10.0
13 1000 1200 10.0 8.3
14 1200 1350 8.3 7.4
15 1350 1450 7.4 6.9
16 1450 1550 6.9 6.5
17 1550 1650 6.5 6.1
18 1650 1750 6.1 5.7
19 1750 1850 5.7 5.4
20 1850 1950 5.4 5.1
21 1950 2050 5.1 4.9
22 2050 2200 4.9 4.5
23 2200 2500 4.5 4.0
24 2500 2800 4.0 3.6
25 2800 3200 3.6 3.1
26 3200 3600 3.1 2.8
27 3600 4000 2.8 2.5
28 4000 4400 2.5 2.3
29 4400 4800 2.3 2.1
30 4800 5900 2.1 1.69
31 5900 6000 1.69 1.67
32 6000 6500 1.67 1.54
33 6500 8000 1.54 1.25
34 8000 8300 1.25 1.20
35 8300 9300 1.20 1.07
36 9300 10100 1.07 0.99

Table 4.1.: Spectral bands in the IR for MSEIRADTRAN (low-resolution version). νi ni and ν f i n are
the initial and final wavenumber limits of the bin, respectively. The other two columns are the
equivalent wavelengths of these two limits.
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# Band νi ni [cm−1] ν f i n [cm−1] λi ni [µm] λ f i n [µm]
21 1950 2050 5.1 4.9
22 2050 2200 4.9 4.5
23 2200 2500 4.5 4.0
24 2500 2800 4.0 3.6
25 2800 3200 3.6 3.1
26 3200 3600 3.1 2.8
27 3600 4000 2.8 2.5
28 4000 4400 2.5 2.3
29 4400 4800 2.3 2.1
30 4800 5900 2.1 1.69
31 5900 6000 1.69 1.67
32 6000 6500 1.67 1.54
33 6500 8000 1.54 1.25
34 8000 8300 1.25 1.20
35 8300 9300 1.20 1.07
36 9300 10100 1.07 0.99
37 10100 10417 0.99 0.96
38 10417 11236 0.96 0.89
39 11236 11905 0.89 0.84
40 11905 12821 0.84 0.78
41 12821 13333 0.78 0.75
42 13333 14493 0.75 0.69
43 14493 14925 0.69 0.67
44 14925 15384 0.67 0.65
45 15384 16667 0.65 0.60
46 16667 18182 0.60 0.55
47 18182 22222 0.55 0.45
48 22222 25000 0.45 0.40
49 25000 28571 0.40 0.35
50 28571 33333 0.35 0.30
51 33333 34482 0.30 0.29

Table 4.2.: Spectral bands in the nIR and the optical for MSEIRADTRAN for the calculation of the
Bond albedo. νi ni and ν f i n are the initial and final wavenumber limits of the bin, respectively. The
other two columns are the equivalent wavelengths of these two limits.
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Marcq et al. (2017) MSEIRADTRAN
0.12618 0.00530
0.37996 0.02771
0.60333 0.06718
0.76231 0.12230
0.86421 0.19106
0.92533 0.27099
0.96029 0.35920
0.97952 0.45249
0.98976 0.54751
0.99504 0.64080
0.99767 0.72901
0.99897 0.80894
0.99957 0.87770
0.99983 0.93282
0.99995 0.97229
0.99999 0.99470

Table 4.3.: G-points used in Marcq et al. (2017) and MSEIRADTRAN.

4.4.3. Gas mixtures
There are three methods to compute the k-tables of a mixture of several gases: pre-mixing, cor-
related, and uncorrelated mixing. Pre-mixing, or pre-mixed k-coefficients (Goody et al. 1989;
Amundsen et al. 2017), consists on calculating directly the k-coefficients from the line-by-line
opacities. Then the k-coefficients can be interpolated in composition between the different k-tables
(Marcq 2012; Marcq et al. 2017). If line-by-line calculations are not available, and we have the k-
tables of the individual species that need to be mixed, the k-coefficients of these individual k-tables
can be used to calculate the k-coefficients of the final mixture. This can be done by assuming that
the spectral features of the individual gases are correlated (Malik et al. 2017), in which case the
mixing of the individual species is:

κmi x,i =
Ng ases∑

j=1
χ j κ j ,i (4.31)

where χ j is the mixing ratio by mass of the j th gas, κ j ,i is the k-coefficient of the j th gas evaluated
at the Gi point, and κmi x,i is the k-coefficient of the final mixture of gases that corresponds to Gi .
The mixing ratio by mass is defined as:

χ j =
X j MW j

µ
(4.32)

where X j =
P j

P
is the volume mixing ratio of the j th species, MW j is its molecular weight and µ is

the mean molecular weight of the mixture.
Nonetheless, the wavelengths at which the spectral lines of a gas are placed are mostly dependent

on the molecular structure of this gas, making it uncorrelated to the spectral lines of another species
with which it is being mixed. Assuming that the spectral lines of the species are uncorrelated is
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equivalent to say that the lines overlap randomly, which is known as Goody’s random overlap
approximation. In reality, line-by-line k-coefficients have intermediate values between the corre-
lated and the uncorrelated approximations (Pierrehumbert 2010). Therefore, I implement both
approximations in the atmospheric model and compare their final OLR for a mixture of water and
CO2 (see Sect. 4.6.1).

Mollière (2017) and Amundsen et al. (2017) describe the procedure to calculate the k-coefficients
of the gas mixture with the uncorrelated method. Firstly, we calculate a matrix that contains the
k-coefficients of the mixture:

κmi x,i j =χH2O κH2O,i +χCO2, j κCO2, j (4.33)

where κH2O,i is the k-coefficient of water evaluated at G = Gi , and κCO2, j is the k-coefficient of
carbon dioxide evaluated at G =G j . Since we use the 16 G-points listed in Table 4.3, the dimension
of the matrix is 16 × 16 = 256 elements in total. Similarly, we calculate a second matrix that contains
the weights that correspond to the k-coefficients in the first matrix:

∆Gi j =∆Gi ∆G j (4.34)
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Figure 4.9.: Right: K-coefficients as a function of G for the unsorted and unbinned random overlap
method. Left: K-coefficients as a function of G after sorting (blue), and both sorting and rebinning
(red). Both panels correspond to a 99% water and 1% CO2 gas mixture, a pressure of P = 200 bar, a
temperature of T = 2600 K and a wavelength of λ = 2 µm.

Then I re-compute the G values that correspond to the weights in the matrix ∆Gi j by sorting
them and using:
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Gk =
k−1∑
l=1

∆Gl +
∆Gk

2
(4.35)

κ(G) presents a scaling problem, because it is not monotonic (see Fig. 4.9, right panel). Lacis
and Oinas (1991) and Amundsen et al. (2017) suggest resorting and rebinning the k-coefficients
to solve this. Instead of resorting the weights, we resort the k-coefficients in increasing order and
plot it with their respective weights. This yields the blue line in the right panel of Figure 4.9. Finally,
to rebin the k-coefficients to the G points I use in the atmospheric model (Table 4.3), I interpolate
κ(G) along G . These final k-coefficients are shown in Fig. 4.9 in red. The resorted κ function shown
in Fig. 4.9 is similar to that displayed in figure 1 of Amundsen et al. (2017).

4.5. Cloud and Rayleigh scattering

4.5.1. Opacities
In Eq. 4.2, the optical depth due to Rayleigh scattering contributes to the total optical depth. In the
clear atmospheric layers, Rayleigh is the only source of scattering, with κcloud s = 0. The Rayleigh
scattering opacity can be parameterized as presented in Pluriel et al. (2019):

κRaylei g h(λ) = κ0

(
λ0

λ

)4

(4.36)

where κ0 and λ0 are tabulated values obtained by Kopparapu et al. (2013) for H2O, and Sneep and
Ubachs (2005) for CO2. In this case, the opacity does not depend on the pressure or the temperature,
but it depends on the wavelength. These values are tabulated in Table 4.4.

H2O CO2

σ0

[cm2/molecule]
2.5×10−27 1.24×10−26

λ0

[µm]
0.6 0.532

Table 4.4.: Rayleigh scattering opacity, σ0, and reference wavelength, λ0. The references for these
values are Kopparapu et al. (2013) and Sneep and Ubachs (2005) for water and CO2, respectively.

In addition, in the atmospheric layers where the temperature reaches the condensation tempera-
ture of water, water starts to condense out and form clouds. These water clouds also contribute to
the total optical depth. The opacity for clouds is calculated as:

κcloud s(λ) [m2/kg ] = 130 Qext (λ) (4.37)

where Qext is the extinction efficiency of the clouds. For Earth-like water clouds, we can follow the
parametrization presented in Marcq et al. (2017). The density of the clouds is computed with the
mass loading in Kasting (1988):

ρcloud s = 4×10−4ρg as (4.38)

where ρg as = ρv +ρc .
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Qext depends on the wavelength as:

Qext =
{

1 λ≤ 20 µm

3.26 ·λ−0.4 λ> 20 µm
(4.39)

4.5.2. Single scattering albedo
The single scattering albedo is defined as the ratio of scattering efficiency to total extinction effi-
ciency. The total extinction is a sum of both extinction by scattering and extinction by absorption.
Therefore, a single scattering albedo of 1 indicates that all extinction is due to scattering, whereas a
value of zero means that absorption dominates. In the clear atmospheric layers, the only source of
scattering is Rayleigh scattering. Hence, the single scattering albedo can be calculated as:

ϖ0, Raylei g h = τRaylei g h

τclear +τRaylei g h
(4.40)

where τclear = τC I A +τl i ne . Then when clouds are present, we need to calculate a weighted average
of the total scattering:

ϖ0, tot al =
τRaylei g h

τcloud +τRaylei g h
×ϖ0, Raylei g h + τcloud

τcloud +τRaylei g h
×ϖ0, cloud (4.41)

where ϖ0, cloud is the contribution of clouds to the total single scattering albedo. This is computed
as the percentage of scattering extinction due to clouds with respect to absorption times the single
scattering albedo of the cloud:

ϖ0, cloud = τcloud

τclear +τcloud
ϖ0 (4.42)

The cloud single scattering albedo depends on wavelength as (Kasting 1988; Marcq 2012; Marcq
et al. 2017):

ϖ0 =
{

1 λ≤ 2 µm

1.24 ·λ−0.32 λ> 2 µm
(4.43)

4.5.3. Phase function
The phase function that describes the scattering due to water clouds is the Henyey-Greenstein
phase function (Liou 1980; Marcq et al. 2017):

PHG (µ) = 1− g̃ 2(
1+ g̃ 2 −2g̃µ

)3/2
(4.44)

The Henyey-Greenstein phase function, PHG , is only dependent on the free variable µ. This
variable is defined as µ = cos(θ), where θ is the angle the incoming radiation forms with the
direction of the scattered light, i.e forward scattering corresponds to θ = 0◦; backward scattering to
θ = 180◦ and scattering to the sides to θ = 90◦ and θ = 270◦ (see Figure 4.10). g̃ is a free parameter of
the Henyey-Greenstein phase function, known as the asymmetry factor, which is dependent on
the composition of the cloud and the wavelength. For water clouds, Kasting (1988) and Marcq et al.
(2017) use the following parametrization:
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g̃ =
{

0.85 λ≤ 10 µm

1.40 ·λ−0.22 λ> 10 µm
(4.45)
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Figure 4.10.: Polar representation of the Henyey-Greenstein (at λ = 5 µm and λ > 10 µm) and
Rayleigh phase functions. Black arrows indicate the direction of forward and backward scattering.

To solve the RT equation, I need to expand the phase function in Legendre polynomials. The
Legendre expansion of a function, f (µ), is defined as:

f (µ) =
∞∑

n=0
(2n +1) ψn Pn(µ) (4.46)

where Pn is the Legendre polynomial of nth order, and ψn is the nth order coefficient of the
Legendre polynomial expansion. These coefficients are defined as the Legendre moments of the
function we want to expand (Liou 1980; Boucher 1998), calculated as:

ψn = 1

2

∫ 1

−1
f (µ) Pn(µ) dµ (4.47)

To calculate the Legendre moments of the Henyey-Greenstein function, Liou (1980) and Boucher
(1998) substitute Eq. 4.44 in Eq. 4.47 and integrate. The zeroth moment of the Henyey-Greenstein
phase function is zero, ψ0 = 0. For the other orders, the nth moment is proven to be ψn = g̃ n . n is
the number of streams considered in the RT solver DISORT, which in our case is n = 4 streams.

Clear atmospheric layers without clouds present Rayleigh scattering, whose phase function is
(Liou 1980):

PRaylei g h(µ) = 3

4

(
1+µ2) (4.48)

Similarly to the Henyey-Greenstein phase function, I calculate the moments of the Rayleigh phase
function by substituting its analytic expression (Eq. 4.48) in Eq. 4.47. The demonstration of the

63



4. Atmospheric model – 4.5. Cloud and Rayleigh scattering

n = 0 to n = 4 moments, which are necessary for the input of the RT solver DISORT, can be found
in the following subsection (Sect. 4.5.3.1). Its final values are ψ0 = 1, ψ1 = 0, ψ2 = 0.1, ψ3 = 0 and
ψ4 = 0.

Finally, when we have both contributions to scattering from clouds and Rayleigh scattering, we
can calculate a weighted average of the moments of the phase functions:

ψn, tot al =
τRaylei g h

τcloud +τRaylei g h
×ψn, Raylei g h + τcloud

τcloud +τRaylei g h
×ψn, cloud (4.49)

4.5.3.1. Rayleigh phase function moments

To calculate the moments (or coefficients in Legendre expansion) of the Rayleigh phase function, I
integrate for n = 0 to n = 4:

ψn = 1

2

∫ 1

−1
PRaylei g h(µ) Pn(µ) dµ (4.50)

PRaylei g h(µ) is the Rayleigh scattering phase function, PRaylei g h(µ) = 3
4

(
1+µ2

)
, and Pn(µ) is the

nth order Legendre polynomial, with the general formula (Liou 1980):

Pn(µ) = 1

2n ·n!

d n

dµn

(
µ2 −1

)n
(4.51)

For n = 0, we have P0 = 1. Therefore Eq. 4.50 yields:

ψ0 = 1

2

∫ 1

−1

3

4

(
1+µ2) dµ= 3

8

[∫ 1

−1
dµ+

∫ 1

−1
µ2dµ

]
= 3

8

[
µ
∣∣∣1

−1
+ µ3

3

∣∣∣1

−1

]
= 1

For n = 1, we have P1 =µ:

ψ1 = 1

2

∫ 1

−1
µ

3

4

(
1+µ2) dµ= 3

8

[∫ 1

−1
µ dµ+

∫ 1

−1
µ3dµ

]
= 3

8

[
µ2

2

∣∣∣1

−1
+ µ4

4

∣∣∣1

−1

]
= 0

For n = 2, P2 = 1

2

(
3µ2 −1

)
:

ψ2 = 1

2

∫ 1

−1

1

2

(
3µ2 −1

) 3

4

(
1+µ2) dµ= 3

16

[∫ 1

−1
2µ2dµ−

∫ 1

−1
dµ+

∫ 1

−1
3µ4dµ

]
=

= 3

16

[
2

3
µ3

∣∣∣1

−1
−µ

∣∣∣1

−1
+ 3

5
µ5

∣∣∣1

−1

]
= 1

10

For n = 3, we obtain P3 = 1

2

(
5µ3 −3µ

)
:

ψ3 = 1

2

∫ 1

−1

1

2

(
5µ3 −3µ

) 3

4

(
1+µ2) dµ= 3

16

[
−

∫ 1

−1
3µ dµ+

∫ 1

−1
2µ3dµ+

∫ 1

−1
5µ5dµ

]
=

= 3

16

[
−3

2
µ2

∣∣∣1

−1
+ 1

2
µ4

∣∣∣1

−1
+ 5

6
µ6

∣∣∣1

−1

]
= 0

Finally, for n = 4, the Legendre polynomial yields P4 = 1

8

(
35µ4 −30µ2 +3

)
:

ψ4 = 1

2

∫ 1

−1

1

8

(
35µ4 −30µ2 +3

) 3

4

(
1+µ2) dµ=
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= 3

64

[
−

∫ 1

−1
27µ2dµ+

∫ 1

−1
5µ4dµ+

∫ 1

−1
3 dµ+

∫ 1

−1
35µ6dµ

]
=

= 3

64

[
(−9)µ3

∣∣∣1

−1
+µ5

∣∣∣1

−1
+3 µ

∣∣∣1

−1
+5µ7

∣∣∣1

−1

]
= 0

4.6. Atmospheric model validation
In this section, I compare the atmospheric model developed in this thesis, MSEIRADTRAN, to other
well-documented atmospheric models. These models are those developed by Marcq et al. (2017),
and Pluriel et al. (2019). In addition, the emission spectra and OLR generated with our model are
compared with the publicly available atmospheric model petitRADTRANS (pRT) (Mollière et al.
2019), whose use is widely extended in the astrophysical community to compute emission and
transmission spectra of exoplanets with clear and cloudy atmospheres.

In subsection 4.6.1, I compare the emission spectra, while in subsection 4.6.2, I show the reflection
spectra and Bond albedo. Finally, in subsection 4.6.3 I re-calculate mass-radius relationships and
adiabats in the water phase diagram for supercritical water planets by coupling MSEIRADTRAN
with our interior structure model.

4.6.1. Emission spectra
I compare the outgoing fluxes and optical depths calculated with the approach from Marcq et al.
(2017), with two different opacity k-tables: the one I use in this thesis (see Sect. 4.4.2), and the
original opacity table of Marcq et al. (2017).
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Figure 4.11.: Upward outgoing flux, F (G), as a function of G-point in the k-correlated method for
three bands (see text). Squares indicate the values calculated with the opacity data I compiled,
while circles correspond to the data used by Marcq et al. (2017). Black lines mark the limits of the
bins in G-space used by Marcq et al. (2017).
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Figure 4.11 shows this comparison for three bands. These bands comprise the wavelengths
between 1.7 to 2.0 µm (red), 8.3 to 10.0 µm (blue), and 17.2 to 20.0 µm (green). The fluxes between
the two models are very similar in all three bands, indicating that differences are due to the opacity
data in the k-tables. The outgoing fluxes in Fig. 4.11 are calculated by inputting the total optical
depth to our RT solver, DISORT. To understand in what parts of the atmosphere the opacity data
differ the most, we plot the difference between optical depths calculated with the two k-tables with
the same approach to the k-correlated method. Figure 4.12 plots the difference in optical depth as
a function of G in all atmospheric layers for the wavelength bin centered at λ= 1.8 µm. It can be
seen that the greatest differences come from the layers at higher pressures, which is expected since
the maximum pressure of the tabulated k-tables used by Marcq et al. (2017) is 100 bar. Therefore,
the optical depth between 100 and 300 bar is underestimated, since it is out of its validity range.
The opacity tables provided by HELIOS-K covers pressures up to 300 bar, which is the appropriate
maximum pressure of validity for our interior-atmosphere coupling.
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Figure 4.12.: Difference in optical depths calculated with the opacity data used in this work and
that of Marcq et al. (2017). Negative values indicate that the optical depth in Marcq et al. (2017) is
underestimated compared to MSEI. The atmospheric level P = 100 bar is indicated in dashed blue
line.

After checking that the k-table is being handled consistently in our atmospheric model, the
formalism and k-table data analysis described in Sect. 4.4.1 is carried out for all spectral bands in
the IR. The IR emission spectrum of the same atmosphere is shown in Fig. 4.13 for different versions
of the atmospheric model for the same planet. I choose the case of HD 207897 (Heidari et al. 2022),
for which we perform a interior-atmosphere analysis based on mass and radius data (see Sect. 6.3.4).
Its mass is approximately M = 15 M⊕, while its total radius is R = 2.5 R⊕. I approximate its bulk
radius for the atmosphere model comparison to R = 1.9 R⊕, which is the radius that encloses the
core and mantle to provide a realistic bulk density for a sub-Neptune. I recall that the atmospheric
model in Marcq et al. (2017) (black dots) adopts the k-correlated approach, where the sum over
G-points requires running the RT solver in the process, while the k-uncorrelated method ends the
sum over G-points before reaching the RT solver. Green triangles correspond to the the k-correlated
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method with the opacity data I compiled for MSEI, which includes the POKAZATEL (Polyansky et al.
2018) line list for water. The k-uncorrelated version of MSEI (red crosses) uses the same opacity
data (see Sect. 4.4.1).

In the grey model (grey crosses), the line opacity is constant with wavelength, being 0.01 m2/kg
for H2O, and 10−4 m2/kg for CO2. These constant grey opacities are benchmarked with non-grey
atmospheric models (Nakajima et al. 1992; Marcq et al. 2017). In the case of water, a grey opacity of
0.01 m2/kg is representative of the opacity of water in the 8-20 µm spectral window at the Standard
Reference Point (Ingersoll 1969). The two versions of MSEI and Marcq et al. (2017) agree well in
all spectral wavelengths. The grey line model tends to slightly underestimate the emission in the
mid-IR, which is expected because the grey opacity is only valid at a limited range of wavelengths.
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Figure 4.13.: IR emission spectrum of a planet with Tsur f = 1000 K, Psur f = 300 bar and 99% water
with a mass of M = 15 M⊕ and a radius of R = 1.875 R⊕. The grey line model emission and the
spectrum obtained by petitRADTRANS (pRT) are also shown.

For comparison purposes, I also show the emission spectrum calculated with petitRADTRANS
(pRT) (Mollière et al. 2019), which is a widely used Python package to generate emission and
transmission spectra of exoplanets with clear and cloudy atmospheres6. The k-uncorrelated version
of MSEI yields slightly higher emission than Marcq et al. (2017) and the other version of MSEI
at approximately 10 µm. However, the difference between the k-uncorrelated version and the
k-correlated models (MSEI and Marcq et al. (2017)) is smaller than that between these models
and pRT, despite being a k-correlated model as well. I choose to obtain the spectrum in pRT in
low-resolution ("c-k") mode to use the k-correlated method instead of the line-by-line method, so
it uses the same method as the the other models shown in Fig. 4.13. Differences between the MSEI
models and pRT are due to the different CIA and clouds opacities. These differences can also be
seen in Table 4.5, where I display the values of the bolometric OLR. The OLR of both versions of
MSEI have a very small difference (11 W/m2).

6https://gitlab.com/mauricemolli/petitRADTRANS
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I maintain the mass, radius and surface pressure of the planet constant, and change the surface
temperature to calculate the OLR as a function of Tsur f (Figure 4.14). The OLR calculated by the k-
uncorrelated MSEI agrees well with Marcq et al. (2017). The grey line model tends to underestimate
the OLR compared to the non-grey models, especially in the surface temperature range of 2000 to
3000 K, when the spectrum of water presents more lines and the opacity varies very rapidly with
wavelength. The inclusion of the optical spectral bands contributes to the OLR with ≃ 10−4 W/m2,
which is negligible compared to the OLR in the IR seen in Table 4.5.

Model OLR [W/m2]
Marcq et al. (2017) 269.91

Grey 270.89
MSEI k-correlated 268.97

MSEI k-uncorrelated 280.36
pRT 104.58

Table 4.5.: Comparison of the bolometric OLR for different models. This corresponds to an atmo-
sphere of 99% water and a surface temperature and pressure of 1000 K and 300 bar, respectively.
The bulk mass and radius of the planet (from center to surface) are 15 M⊕ and 1.875 R⊕.
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Figure 4.14.: OLR as a function of surface temperature for planets with Psur f = 300 bar and 99%
water with a mass of M = 15 M⊕ and a radius of R = 1.875 R⊕. For comparison, the OLR estimated
with the atmospheric models of Marcq et al. (2017), Pluriel et al. (2019) and pRT (Mollière et al.
2019) are also shown.

So far, I have considered the correlated method to mix the k-tables of water and CO2 to obtain a
99% water and 1% CO2 composition. Figure 4.15 shows a comparison of the OLR calculated with
both mixing approximations (correlated and uncorrelated) for a CO2-dominated atmosphere. In
addition, I display three reference models: Marcq et al. (2017), Pluriel et al. (2019) and pRT. The
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correlated approximation agrees well with Marcq et al. (2017) and Pluriel et al. (2019) at Tsur f ≤ 2500
K, while at higher temperatures the OLR is within the uncertainties of these two models and pRT.
The difference between pRT and the other two models could be due to the different opacity data and
the use of the uncorrelated mixing method by pRT (Mollière et al. 2019). However, the uncorrelated
approximation in MSEI seems to overestimate the OLR with respect to all three reference models.
For this reason, I henceforth use the correlated approximation to mix the k-tables of H2O and CO2.
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Figure 4.15.: OLR as a function of surface temperature for a 99% CO2 and 1% water atmosphere,
with surface pressure Psur f = 300 bar. The bulk mass and radius of the planet are 1 M⊕ and 1 R⊕,
respectively.

4.6.2. Reflection spectra and Bond albedo
As explained in Sect. 4.1, DISORT obtains the reflectivity as a function of SZA and spectral band. This
means that to compute the final bolometric Bond albedo, the reflectivity needs to be intregrated
over SZA and wavelength. Figure 4.16 shows the dependance of the reflectivity on the cosine of
the SZA for a water-dominated atmosphere with clouds. At optical wavelengths, the albedo is high
and approximately constant due to clouds, while at IR wavelengths the albedo is higher at low SZA.
Despite clouds being present in the atmosphere, at wavelengths λ > 2 µm the single scattering
albedo of clouds starts to decrease (see section 4.5.2), and Rayleigh scattering dominates at these
wavelengths.
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Figure 4.16.: Reflectivity as a function of solar zenith angle (SZA) for four different spectral bands.
This corresponds to a 99% water atmosphere with surface temperature Tsur f = 1000 K, surface
pressure Psur f = 300 bar and a bulk radius and mass of 1 R⊕ and 5 M⊕.

Once the reflectivity is integrated as shown in Eq. 4.4, we obtain the reflection spectrum. Figure
4.17 shows the albedo as a function of wavelength for two different surface temperatures. At Tsur f =
1000 K, the albedo at short wavelengths is dominated by clouds and Rayleigh scattering, yielding a
very high albedo of ∼ 0.92 at λ< 0.5 µm. At longer wavelengths, we can identify the water lines at
0.7, 1.1, 1.4 and 1.9 µm that are also characteristic of Earth’s reflection spectrum (Des Marais et al.
2002). We also observe the water spectral line at 2.7 µm, mentioned by Pluriel et al. (2019) in their
figure 3. The spectral binning used to calculate the reflection spectra is similar to that of Pluriel
et al. (2019) in the optical. For Tsur f = 2500 K, no clouds form. This affects the albedo at short
wavelengths, with values of 0.8-0.6, which are lower than the cloudy atmosphere case. Only the
water line at 0.7 µm can be identified, since at high surface temperatures the atmosphere becomes
very opaque.

I obtain and integrate the reflection spectra of a water-dominated atmosphere at different surface
temperatures (see Eq. 4.5). I compare the final bolometric Bond albedo calculated by MSEI with
that of Pluriel et al. (2019) in Fig. 4.18. Both models agree on the albedos since we use similar
parametrizations of the single scattering albedo for clouds and Rayleigh scattering.
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Figure 4.17.: Reflection spectrum for 99% water atmospheres with surface temperatures of 1000 K
and 2500 K, surface pressures of 300 bar and bulk mass and radius of 1 R⊕ and 5 M⊕. Green areas
indicate the water lines in the optical and near-IR.
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Figure 4.18.: Bolometric Bond albedo as a function of surface temperature. I assume 99% water
atmospheres with surface pressures of 300 bar, and bulk mass and radius of 1 R⊕ and 5 M⊕. The
bolometric albedo is computed considering a Sun-like star with T⋆ = 5777 K.
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4.6.3. Mass-radius relations and water phase diagram
I couple the MSEI atmospheric model, MSEIRADTRAN, with the interior model using the algorithm
described in Chapter 3.
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Figure 4.19.: Upper panel: Mass-radius relationships for a planet with a water-dominated atmo-
sphere orbiting a Sun-like star at ad = 0.05 AU. Dashed lines indicate the total radius calculated by
MSEI (k-uncorrelated), while the solid line corresponds to the interior radius, which comprises
the core, mantle, and supercritical water (SW). Triangles and circles indicate the total radius and
the interior radius obtained when the interior model is coupled with the atmospheric model of
Pluriel et al. (2019), respectively. Lower panel: Temperature at the 300 bar interface as a function of
planetary mass.

I derive mass-radius relationships for a planet orbiting a Sun-like star (Te f f = 5777 K, Rst ar = 1 R⊙)
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at ad = 0.05 AU, assuming a water-dominated atmosphere (99% water). This corresponds to
an equilibrium temperature Teq (AB = 0) = 1246 K under the assumption of a black body, and
Teq = 1165 K with the albedo calculated by our model for a water-dominated atmosphere, which is
AB = 0.237. The pressure at the base of the supercritical hydrosphere exceeds the critical point of
water for these compositions (WMF > 0.01), therefore the pressure at the base of the atmosphere is
P = 300 bar, which serves as the interface between the atmosphere and the interior.

Figure 4.19 shows the mass-radius relations for three compositions: 70% supercritical water (SW)
and 30% mantle, 20% SW and 80% mantle and 1% SW and 99% mantle. In other words, I adopt a
constant core mass fraction of zero, for three values of the water mass fraction, WMF = 0.70, 0.20
and 0.01. The contributions to the total radius are two: the interior, which is dependent on the
expansion of the supercritical layer (solid lines and circles), and the atmosphere thickness (dotted
lines and crosses). The mass-radius relations derived with our atmospheric model and Pluriel et al.
(2019) are in good agreement, with differences below 1% in radius. The slight differences in the
interior radius, Rtot al − z, are due to the different temperatures at the bottom of the atmosphere
calculated by the two atmospheric models. Similarly, the differences in total radius, especially at low
masses and high water mass fractions, can be explained by the different bottom temperatures and
the EOSs used in the atmospheric models, which yield slightly different atmospheric thicknesses.
I compare the temperatures at the bottom of the atmosphere (P = 300 bar) provided by the two
atmospheric models. Maximum differences are approximately 230 K (see Fig. 4.19, lower panel).
Note that the constant surface temperature at masses below 5 M⊕ in the model by Pluriel et al. (2019)
are due to the limit in the data grid I used for this plot, they do not have a physical interpretation.

Fig. 4.20 shows the OLR and Bond albedo as a function of bottom temperature for our atmospheric
model and that of Pluriel et al. (2019). The trends of the Bond albedo are very similar for both
models. The slight discrepancy in bottom temperature is caused by the small difference in OLR
between the two models. The inaccuracy in OLR in the k-uncorrelated version of MSEI causes
differences of less than 1% in radius compared to the k-correlated model of Pluriel et al. (2019).
Therefore, the k-uncorrelated MSEI may be used to calculate the radius of water-rich planets
within our MCMC retrieval framework, since fast computations of the OLR and Bond albedo are
necessary. The k-uncorrelated approach is an alternative to grey models, whose difference in OLR
with k-correlated models is greater than that obtained with the k-uncorrelated model. However, the
k-uncorrelated approximation should not be used to compute spectra at higher resolution since
the planetary emission differs by a factor of 2 compared to a k-correlated method, which yields a
significant difference in resolutions of R = 200 to 300 (see Sect. 6.4).
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Figure 4.20.: Outgoing Longwave Radiation (OLR) and absorbed flux as a function of bottom
atmospheric temperature, calculated with our atmospheric model (red) and Pluriel et al. (2019)
(blue). Dotted lines indicate the temperature at which the OLR and the absorbed flux are equal,
meaning the atmosphere is in radiative-convective equilibrium.
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Figure 4.21.: Mass-radius relationships for a planet with water-dominated atmospheres whose
stellar host is similar to TRAPPIST-1 (R⋆ = 0.117 R⊙, T⋆ = 2560 K) with a semi-major axis ad = 0.01
AU.
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Figure 4.22.: Mass-radius relationships for a planet with CO2 whose stellar host is similar to
TRAPPIST-1 (R⋆ = 0.117 R⊙, T⋆ = 2560 K) with a semi-major axis ad = 2.27 × 10−2 AU (TRAPPIST-1
d).

Similarly to the mass-radius relationships for atmospheres with surface pressure of 300 bar, I
derive the MR relationships for planets with water-dominated atmospheres and surface pressures
Psur f = 100 bar, 10 bar and 1 bar. These can be seen in Fig. 4.21, which correspond to a planet
orbiting at 0.01 AU an M dwarf similar to TRAPPIST-1. In Fig. 4.22, I derive the MR relationships of a
planet with a CO2-dominated atmosphere with Psur f = 300 bar. The stellar host and the semi-major
axis corresponds to those of TRAPPIST-1 and TRAPPIST-1 d, respectively. It can be seen that these
MR relationships agree well between our model and Pluriel et al. (2019).

Finally, to test the consistency between the interior model (Sect. 2) and our atmospheric model, I
derive the pressure-temperature profile for a planet of M = 5 M⊕, R = 1.5 R⊕, and a composition
of 50% water and 50% mantle. I assume a Sun-like star for the calculation of the Bond albedo,
and different semi-major axes, which yields different surface temperatures for an atmosphere in
radiative-convective equilibrium. The adiabatic profiles in Fig. 4.23 are smooth, and the slope at
the pressure at which the interior and the atmosphere are coupled (300 bar) is similar between the
interior and the atmosphere. In the case of the interior, the adiabatic gradient is calculated using
the EOS from Mazevet et al. (2019), whereas in the atmosphere the adiabatic gradient is computed
as described in Section 4.2. Note that the smooth transition in the adiabat between the interior and
the atmosphere is due to assuming an isentropic profile in both. This means that we consider that
heat is transported in the interior and in the atmosphere by an adiabatic and reversible process,
dS/dr = 0, where S corresponds to the entropy, and r to the planetary radius.
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Figure 4.23.: Adiabatic pressure-temperature profiles for the complete hydrospheres (interior and
atmosphere) of water-rich planets. I assume a planet with M = 5 M⊕, R = 1.5 R⊕, a composition of
50% water and 50% mantle, and a Sun-like star. The dotted-dashed grey line indicates the transit
pressure level P = 20 mbar.
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5. Bayesian statistics

The interior-atmosphere model described in Chapters 2 to 4 is a forward model. This means that
given a certain set of planetary variables, such as the CMF, WMF and total mass, the forward model
obtains the total radius that should be observed. Since we currently have available mass and radius
observations for many low-mass planets, we invert the forward interior-atmosphere model using
the Markov chain Monte Carlo (MCMC) method. The aim of the MCMC method is to infer the
posterior distribution functions, mean and uncertainties of the compositional parameters of super-
Earths and sub-Neptunes. In contrast to comparing the mass and radius with the mass-radius
relations, the MCMC provides an estimate of the uncertainties of the core mass fraction and water
mass fraction based on the error bars of the observables.

In Sect. 5.1 we describe the basic MCMC Bayesian algorithm and sampling, while in Sect. 5.2 we
explain how the sampling of the compositional parameters (CMF and WMF) is improved with an
adaptive step size. Finally, in Sect. 5.3 we validate our MCMC implementation with two cases: the
super-Earth CoRoT-7 b, and the sub-Neptune TOI-220 b.

5.1. Algorithm
I use the Bayesian MCMC algorithm described in Dorn et al. (2015) to compute the posterior
PDF of the non-observables from data and prior information. Our model parameters are the
planetary mass, M ; the CMF, xcor e ; and the WMF, xH2O . Therefore, one single model is determined
by these three parameters as m = {M , xcor e , xH2O}. The available data are the total mass M , the
total radius R, and the Fe/Si abundance, d = {Mobs ,Robs ,Fe/Siobs}, whose observational errors
are σ(Mobs),σ(Robs),σ(Fe/Siobs), respectively. When the Fe/Si mole ratio is not considered in the
inverse problem, the data is reduced to only the total planetary mass and radius, d = {Mobs ,Robs}.
The prior information consists on a Gaussian distribution centered on the mean value of the
observed mass, with a standard deviation equal to the observational uncertainty. For the CMF, I
use a uniform distribution between 0 and 1. In some cases, we further constrain the CMF setting a
maximum value in its prior distribution. This maximum value is 0.75, which corresponds to the
highest possible estimated Fe/Si ratio of the proto-Sun (Lodders et al. 2009). We only assume this
maximum limit for planets whose density is low enough to suggest that they have not experienced
post-formation events that could increase their Fe content, such as mantle evaporation or giant
impacts that can strip away the mantle. In the case of the WMF, I consider a uniform distribution
between 0 and 0.8. This maximum limit is the maximum volatile content found in comets of the
Solar System (McKay et al. 2019).

The MCMC scheme first starts by drawing a value for each of the model parameters from their
prior distributions, which we denote as mol d = {

Mol d , xcor e,ol d , xH2O,ol d
}

. The interior model calcu-
lates the planetary radius and Fe/Si abundance that corresponds to these model parameters, which
is g(mol d ) = {Rol d , Mol d ,Fe/Siol d }. The likelihood of this set of model parameters is calculated with
equation 6 in Dorn et al. (2015), which in our case is:
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L(mol d | d) =C exp

(
−1

2

[(
(Rol d −Robs)

σ(Robs)

)2

+
(

(Mol d −Mobs)

σ(Mobs)

)2

+
(

(Fe/Siol d −Fe/Siobs)

σ(Fe/Siobs)

)2])
, (5.1)

C is the normalization constant of the likelihood funtion, defined as:

C = 1

(2π)3/2
[
σ2(Mobs) ·σ2(Robs) ·σ2(Fe/Siobs)

]1/2
(5.2)

Then a new model is proposed, mnew,1 =
{

Mnew,1, xcor e,new,1, xH2O,new,1
}
, by adding a perturba-

tion to the previous model parameters, mol d . The absolute difference between the old and the
new model is lower than a fixed step, which is the maximum size of the perturbation. By limiting
the size of the perturbation, we are certain that the new state is uniformly bounded and centered
around the state of the old model. The maximum step size in the walker regulates the acceptance
rate of the MCMC. The acceptance rate is defined as nacc /npr op , which is the number of accepted
models over the number of total proposed models. We choose our maximum step size so that our
acceptance rate is above 20%. The output of the interior model for this new set of model parameters
is obtained as g(mnew,1) = {

Rnew,1, Mnew,1,Fe/Sinew,1
}

. The likelihood function for this new model
is then computed as:

L(mnew,i | d) =C exp

(
−1

2

[(
(Rnew,i −Robs)

σ(Robs)

)2

+
(

(Mnew,i −Mobs)

σ(Mobs)

)2

+
(

(Fe/Sinew,i −Fe/Siobs)

σ(Fe/Siobs)

)2])
, (5.3)

The normalization constant is given by Eq. 5.2, similarly to the likelihood expression for the old
set of model parameters.

We then compute the log-likelihoods of the old and the new model as l (mol d | d) = log (L(mol d |
d)), and l (mnew,i | d) = log (L(mnew,i | d)), respectively. The probability with which mnew,i is ac-
cepted is:

Paccept = mi n
{

1,e(l (mnew,i |d)−l (mol d |d))
}

(5.4)

Consecutively, a random number is drawn from a uniform distribution between 0 and 1. If Paccept

is greater than this random number, mnew,1 is accepted and the chain moves to this set of model
parameters, starting the next chain n +1 with mol d = mnew,1. Otherwise, the chain remains in
mol d and a different set of model parameters is proposed, mnew,2. The accepted models are stored,
and values of their parameters conform the PDF that will enable us to estimate their mean and
uncertainties.

5.2. Adaptive MCMC
In the MCMC algorithm described in the previous section, the random walker uses a uniform
distribution to choose the next state where it is going to move in the parameter space of the CMF
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and WMF. This is called a naive walk (Mosegaard and Tarantola 1995), in which all points in the
parameter space have a probability of being chosen proportional to their number of neighbours.
This poses the following problem: for the states whose CMF or WMF are close to 0 or 1, they are
less likely to be sampled in the random walk, because they have less neighbours than the central
values (i.e the central range 0.2-0.7). In Sect. 5.1, I commented that planets with compositions of
CMF or WMF equal to 1 are unlikely. However, many highly-irradiated rocky planets might present
low-mass atmospheres, which correspond to a WMF close to 0.

To compensate the lower probability of being chosen in the limiting states of the prior, I pro-
pose to use an adaptive step size in the walker. This consists on adapting the maximum size of
the perturbation used to generate a new model instead of using a fixed value everywhere in the
parameter space. This adaptive step size will tend to decrease in the limiting areas of the prior
(i.e low WMF states) and have its greatest value in the centre of the prior (WMF = 0.5). The self-
adjusting step size is usually carried by a transformation of the parameter space, which ranges from
exponential to spherical transforms (Chaudhry et al. 2021). In this work, we choose to implement
the self-adjusting logit transform (SALT), proposed by Director et al. (2017). This is based on the
element-wise transformation known as stick-breaking process, where a stick of length 1 is broken
into pieces of different lengths. The more pieces the stick is broken into, the more concentrated are
the distributions. The SALT transform is publicly available in the SALTSampler R package1, which
eases its implementation in Python for our own forward model.

In our particular problem, we consider a simplex of k = 3 categories. The simplex is defined as
the mathematical space where each point represents a probability distribution between a finite
number of mutually exclusive events. Each of these events is called a category. In our case, the 3
categories are the CMF, the WMF, and the mantle mass fraction (MMF), which fulfill the requirement
xFe + xH2O + xmantle = 1. Thus, the simplex is represented by an object of k-1 = 2 dimensions,
which is the ternary diagram (see Fig. 2.4 for an example). For clarity, in this section I redefine
the model parameter notation as mnew = {

Mnew , x ′}, where x ′ = {
x ′

cor e , x ′
H2O , x ′

mantle

}
. Similarly,

mol d = {Mol d , x}, where x = {xcor e , xH2O , xmantle }.
I first start the calculation of the new proposal, x ’, by choosing one of the categories randomly.

Then the proposal of its new value is obtained as:

x ′
i = i log i t

[
log i t (xi )+hi ×Z

]
(5.5)

where hi is a real positive constant chosen arbitrarily, and Z is a value sampled from the normal
distribution, N (0,1). The logit transformation of a variable consists of:

log i t (p) = log

(
p

1−p

)
(5.6)

And its inverse transformation:

i log i t (x) = ex

1+ex
(5.7)

Once I have the proposal of the first category, I select the second category randomly from the
two that were left, and calculate its proposal by rescaling it with a randomly uniform proportional
constant:

1https://rdrr.io/cran/SALTSampler/man/SALTSampler-package.html

79

https://rdrr.io/cran/SALTSampler/man/SALTSampler-package.html


5. Bayesian statistics – 5.3. MCMC Validation

x ′
j =

(
1−x ′

i

)( x j

1−xi
+U j

)
(5.8)

where U j is the constant sampled from the uniform distribution U (−ϵ,ϵ), and x ′
i is the proposal of

the first category (Eq. 5.5). The constant ϵ is selected arbitrarily close to zero, which restricts the
proposals to our simplex. The proposal for the remaining category is calculated as:

x ′
l = 1−x ′

i −x ′
j (5.9)

In addition, the acceptance probability is modified with respect to Eq. 5.4. In the most general
case of the Metropolis rule, the acceptance probability is Paccept = mi n

{
1,raccept

}
, where raccept

is the product of the posterior density ratio and the transition probability ratio (Mosegaard and
Tarantola 2002; Director et al. 2017):

raccept = p(x ′|d )

p(x |d )

q(x |x ′)
q(x ′|x)

(5.10)

where p is the posterior density, and q is the transition probability.
If in the proposal calculation, there is no transformation, we retrieve Eq. 5.4, because q(x |x ′) =

q(x ′|x), and
p(x ′|d )

p(x |d )
= e l (x ′|d )−l (x |d ). For the logit transform, the transition term is computed as

(Director et al. 2017):

q(x |x ′)
q(x ′|x)

= x ′
i

xi

[
1−x ′

i

1−xi

]k−1

(5.11)

where k-1 = 2 for our two-dimensional simplex. We can summarize the Metropolis-Hastings
algorithm in the SALT MCMC as:

1. Calculate a new proposal for one of the categories, randomly chosen (Eq. 5.5)

2. Obtain the acceptance probability with Eqs. 5.10 and 5.11

3. If accepted, compute the proposals of the remaining categories with Eqs. 5.8 and 5.9. If
rejected, a new category is chosen randomly to obtain its proposal in the next iteration.

5.3. MCMC Validation
Dorn et al. (2017) study the case of CoRoT-7 b with a non-adaptive MCMC. I test the non-adaptive
MCMC (see Sect. 5.1) for CoRoT-7 b to compare with the analysis of Dorn et al. (2017), by using
their mass and radius data (see Table 5.1).

M (data) [M⊕] 4.386±0.985
R (data) [R⊕] 1.614±0.102

M [M⊕] 4.328±0.572
R [R⊕] 1.632±0.076
xcor e 0.23±0.18
xH2O 0.14±0.12

Table 5.1.: CoRoT-7 b MCMC input (data), and output mean values and 1σ uncertainties.
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Figure 5.1.: Sampled 2D PDFs for CoRoT-7 b showing correlations between core and mantle size, and
WMF. Upper panel: black solid line indicated the lower limit of the mantle size, where rmantle = rcor e .
Middle and lower panels: blue points indicate simulations whose mass and radius are within their
respective 1σ uncertainties.

The equilibrium temperature of CoRoT-7 b is 1756 K, which is too warm to hold liquid water in its
surface. Nonetheless, to simplify this comparison between our MCMC implementation and that of
Dorn et al. (2017), I assume that the hydrosphere is in condensed form in the interior model (see
Sect. 2.1). I adopt Earth’s surface temperature and pressure values, since Dorn et al. (2017) include
a liquid water layer with a gas layer on top. We consider a maximum limit for the CMF, xcor e < 0.65,
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based on the maximum CMF of Mercury. The maximum limit on the WMF is 50%, which is the
maximum value estimated by interior modelling of the moons in the Solar System (i.e Titan).

Fig. 5.1 shows the correlation between the mantle radius, rmantle ; the core radius, rcor e ; and the
WMF, xH2O , of our sampled PDFs. Both analyses agree in that the size of the core is below 0.7 R (see
figure 4 in Dorn et al. 2017), and that rmantle is constrained in the interval 0.6-1 R . Dorn et al. (2017)
consider an extra gas layer in their interior model that we do not include in this validation test. If
we compare figures 5 and 6 in Dorn et al. (2017) with Fig. 5.1, we can see that the WMF in our case
extends to higher values. This is because our water layers are accounting for all the volatile content,
whereas in Dorn et al. (2017) the volatile content is distributed between the water and the gas layer.
We conclude that with our implementation of the algorithm described in Sect. 5.1, we have been
able to reproduce the results of the core and mantle layers in Dorn et al. (2017).

Once the non-adaptive MCMC is validated, I compare the non-adaptive (Sect. 5.1) and the
adaptive (Sect. 5.2) versions of the MCMC for TOI-220 b (Hoyer et al. 2021). I consider as data the
total mass and radius, as well as the Fe/Si mole ratio, which has been calculated with the stellar
abundances of the host star. No maximum limits have been established for the CMF or the WMF.
TOI-220 b has an equilibrium temperature of 806 K, which means that it is strongly irradiated
and could present steam and supercritical phases. Thus, I apply the interior-atmosphere model
described in Chapters 3 and 4, implemented within both versions of the MCMC (adaptive and
non-adaptive).

Table 5.2 shows a comparison of the input data, and the retrieved parameters of the non-adaptive
and adaptive MCMCs. All three agree within uncertainties for mass, radius and Fe/Si. The uncer-
tainties of the mass and radius in the non-adaptive MCMC are smaller than the input data. This
difference in uncertainties is significant in the case of the total mass, and it is also observed in
the case of CoroT-7 b (Table 5.1). This indicates that the non-adaptive MCMC is not as effective
as the adaptive MCMC at sampling all possible {xcor e , xH2O} pairs that could reproduce the mass
and radius data. As a consequence, the uncertainties of the WMF are being underestimated in the
non-adaptive MCMC, while the adaptive MCMC produces a greater confidence interval for the
WMF, and retrieves the exact uncertainties of the mass and radius.

Data Non-adaptive Adaptive
M [M⊕] 13.8±1.0 13.8±0.7 13.7±1.0
R [R⊕] 3.03±0.15 3.06±0.12 2.98±0.15
Fe/Si 0.65±0.09 0.64±0.11 0.64±0.10
xcor e 0.08±0.03 0.09±0.03
xH2O 0.62±0.10 0.58±0.14

Table 5.2.: TOI-220 b MCMC input (Data), and output mean values and 1σ uncertainties for the
non-adaptive and adaptive MCMCs.

In Fig. 5.2, I show the sampled 2D PDFs for the CMF and the WMF in the ternary diagram. In
addition to the same area of the ternary diagram as the non-adaptive algorithm, the adaptive
MCMC explores an area at lower WMF along the Fe/Si = 0.65 isoline, going down to WMF = 0.10
in the driest simulations. This is a consequence of the ability of the adaptive MCMC to sample
better the extremes of the prior distribution of the WMF, in comparison to the non-adaptive MCMC.
Furthermore, the acceptance rate is also improved in the adaptive case, being able to accept 2110
simulations (53% acceptance rate) in comparison to 1400 simulations (35% acceptance rate) of the
non-adaptive case within the same time. For a fixed number of accepted simulations naccept ≃ 8000,
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the total time is reduced from 7 days in the non-adaptive MCMC, to 4-5 days in the adaptive MCMC.
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Figure 5.2.: Sampled 2D PDFs of the CMF and WMF in the ternary diagram for TOI-220 b for
non-adaptive (red) and adaptive (blue) MCMCs. The mean value of the input Fe/Si mole ratio is
indicated in a dashed black line.

5.4. Optimization and Python interface
The adaptive step size for MCMC methods for concentrations was written by Director et al. (2017)
in the SALT Sampler package in R, which is a programming language specific for statistics. The
interior and atmosphere models are written in Fortran 99. A first approach to put together the
adaptive MCMC with the interior and atmosphere models could be translating the SALT Sampler
package from R into Fortran 99, since Fortran has a few statistics libraries. However, these are
not as well-documented and extensive as the statistical libraries already developed in Python. In
fact, other forward models, such as petitRADTRANS, have their core code (input/output, radiative
transfer calculations) in Fortran. Then, an interface built between Fortran and Python calls the
Fortran subroutines to obtain the output and handle the plotting and statistics in Python. An
example of this is the implementation of atmospheric retrieval of petitRADTRANS with emcee
(Foreman-Mackey et al. 2013) and pyMultiNest (Buchner et al. 2014), which are MCMC samplers
written in Python. Therefore, I build an interface for the interior and atmosphere models between
Fortran and Python, so I can call the interior and atmosphere models from Python. Later on, I
translate the original SALT Sampler package from R to Python.

The interface between Fortran and Python is built with a Python package named f2py2 (Fortran
to Python interface generator). Before building the interface with this Python package, the code in
Fortran needed to be adapted so it would have the format of a subroutine, such as:

SUBROUTINE MSEI_interior(input_variable1, input_variable2, ...,
output_variable1, output_variable2,...)

2https://numpy.org/doc/stable/f2py/
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This was the format of the atmospheric model initially, although this was not the case for the
interior model. In addition, I optimized the interior model by separating the code that reads the
input files and loads the data of the materials of each layer from the code that solves the differential
equations presented in Sect. 2.1. This allows us to load the data just one, at the beginning of the
interior model run, instead of each time the interior profiles are integrated, as it was done in the
previous code implementation. Furthermore, f2py gives the possibility to generate the signature
files with an optimization flag, such as --opt=’-O3’. The signature files are the files that contain
the wrapper functions for the Fortran subroutines to Python. After this optimization, one complete
run for one single exoplanet in the forward interior model was reduced from 1 min 45 seconds, to
30 seconds. This means that the computing time was reduced to 30% of its original value. Now both
the interior and atmosphere models can be called from Python in a user-friendly way, where the
model is a module, and its functions are contained in a class. In the following example, the module
MSEI is the package that contains the class int_planet. The function calc_radius in this class
calculates the radius of the planet from its center up to the upper interface of the supercritical layer:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 29 13:10:09 2022

@author: lacuna
"""

# Import module
import MSEI

# Class
myplanet = MSEI.int_planet()

# Function to load layer material data
myplanet.setup_parameters()

# Input parameters
M_Pt = 1.6628 # Mass in Earth mass units
x_coret = 0.0 # Core mass fraction
x_H2Ot = 0.7 # Water mass fraction
T_surft = 4183 # Surface temperature in K
P_surft = 3e7 # Surface pressure in Pa

# Function that calculates the radius
myplanet.calc_radius(M_Pt,x_coret,x_H2Ot,T_surft,P_surft)

# Print output
print(’Radius [R_E] = ’, myplanet.R_P)
print(’Fe/Si = ’, myplanet.FeSi)
print(’Density [g/m-3] = ’, myplanet.rho_p)
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6. Analysis of planetary systems

This chapter shows the results I obtained on different planetary systems I analysed with MSEI.
These planetary systems host a wide variety of exoplanets, ranging from rocky Earth-sized planets,
to sub-Neptunes.

In Sect. 6.1, I explore the interior structure and composition of TRAPPIST-1. This planetary
system is well-known for hosting seven Earth-sized planets around a cool M-dwarf star (Gillon et al.
2016, 2017). Their equilibrium temperatures range from 400 K to 170 K, making this system ideal to
apply interior models with different volatile phases, from ice and liquid water to supercritical. The
content of this section led to my first-author publication, Acuña et al. (2021), which is attached to
this manuscript in Appendix A.1.

I continue the application of our model to other multiplanetary systems (Sect. 6.2), to perform a
homogeneous analysis of a sample of planets that formed in similar environments. I select systems
that host only low-mass planets (M < 20 M⊕), with a 5 or more planets whose masses and radii are
available. The results displayed in this section led to my second first-author publication, Acuña
et al. (2022), which can be found in Appendix A.2.

In Sect. 6.3, I apply the model to several planetary systems that present less than three planets.
The results exposed in this section have been gathered from eight publications in which I am
co-author. These are enumerated in Appendix B.

In Sect. 6.4 I show how the interior-atmosphere model can be used to assess the observability
of the atmospheres of rocky planets with the James Webb Space Telescope (JWST). I explore the
particular cases of TRAPPIST-1 c and 55 Cancri e, which have been proposed for observations in
emission spectroscopy. Finally, in Sect. 6.5, I discuss the results of our complete sample of planetary
systems in the context of the low-mass planet population.

6.1. TRAPPIST-1
For the analysis of TRAPPIST-1, I adopt the observed mass, radius and semi-major axis values
obtained by Agol et al. (2021) from transit timing variations (TTVs). I present two compositional
scenarios: in scenario 1, I only consider as data the mass and the radius, whereas in scenario 2, I
assume that the planet has a Fe/Si mole ratio equal to the stellar value.

TRAPPIST-1 is a cool M-dwarf, which poses a challenge when deriving its chemical stellar abun-
dances from stellar spectroscopy due to its low brightness. Therefore, I estimate the Fe/Si ratio of
TRAPPIST-1 from a sample of stars with similar metallicity and age, as proposed by Unterborn et al.
(2018). We obtain the sample of stars from the Hypatia Catalogue (Hinkel et al. 2014, 2016, 2017),
and select them based on C/O < 0.8, and -0.04 ≤ [Fe/H] ≤ 0.12, which is the 1σ confidence interval
obtained by Gillon et al. (2017) for TRAPPIST-1. Fig. 6.1 shows the metallicity and Fe/Si of the thin
disk star sample with their respective probability density functions. The Fe/Si mole ratio presents a
mean of 0.76, with a standard deviation of 0.12, which are the values we use as data in scenario 2 of
our analysis.
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Figure 6.1.: Fe/Si and metallicity scatter plot and probability density functions of stars similar
to TRAPPIST-1 (see text) from the Hypatia Catalogue. Red lines indicate the mean and standard
deviation limits of the thin disk sample used to estimate the Fe/Si mole ratio of TRAPPIST-1.

6.1.1. Results
I apply our interior-atmosphere model (Chapters 2 and 3) to the most irradiated planets in TRAPPIST-
1, which are planets b, c and d. In Fig. 6.2, we can see that for planets b and c the atmospheric model
can find a surface temperature at which the OLR equals the absorbed flux, meaning that the atmo-
sphere is in radiative-convective equilibrium. These surface temperatures are approximately 2450
K and 2250 K for TRAPPIST-1 b and c, respectively. On the contrary, the absorbed radiation does
not reach the OLR for any surface temperature for the atmosphere of TRAPPIST-1 c. This suggests
that planet d would be decreasing its global temperature by emitting radiation to space. In addition,
an internal flux of 33 W/m2 would be necessary to establish radiative equilibrium. Barr et al. (2018)
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estimate an internal heat flux for TRAPPIST-1 c induced by tidal heating of 0.16 W/m2, which is
significantly lower than what is needed to bring the atmosphere to radiative equilibrium. Thus,
under the assumption of a water-dominated atmosphere with 1% CO2, the surface of TRAPPIST-1 d
could be cold enough to maintain condensed phases.
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Figure 6.2.: Absorbed and emitted flux as a function of surface temperature for TRAPPIST-1 b, c and
d. Vertical dotted lines specify the bottom atmospheric temperature at which the atmospheres of
planet b and c are in radiative-convective equilibrium.

For planets d to h, which are temperate enough to have condensed phases of water, we consider
their surface temperature for our interior model equal to their equilibrium temperatures at a null
Bond albedo. The thickness of the mantle and condensed water layers has little dependence on the
surface temperature. An Earth mass planet whose surface temperature is changed from 100 K to
360 K experiences a variation in total radius of 0.002 R⊕ in our interior model. For the temperate
planets in TRAPPIST-1, the contribution of the atmosphere to the total radius is expected to be
negligible, with altitudes of 80 km (Lincowski et al. 2018). Therefore, we use the versions of the
interior model with condensed phases for these planets. For TRAPPIST-1 d, which would have
liquid surface conditions, we use the interior model described in Sect. 2.1.

For planets e to h, we use the version of the interior model described in section 2.2 of Acuña et al.
(2021), and in Levesque (2019), which includes ice phases Ih, II, III, IV, V, VI and VII.

I estimate CMF and WMF for all planets in TRAPPIST-1 under the two scenarios (Tables 6.1 and
6.2). We obtain masses and radii that agree within uncertainties with the observed values in both
scenarios, while in scenario 2 we also retrieve the Fe/Si we considered as input. In scenario 1, we are
able to constrain a common Fe/Si mole ratio for the planetary system by considering the overlap of
the 1σ confidence intervals of the individual planets. This interval is Fe/Si = 0.45 - 0.97, which is
compatible with the interval estimated from the stellar sample (Unterborn et al. 2018) that we use
in scenario 2. To visualize this overlap, we display in Fig. 6.3 the 1σ-confidence areas obtained from
the 2D posterior distributions of the CMF and WMF for scenario 1 (top panel). The common CMF
has a minimum value that is delimited by the lower limit of the confidence region of TRAPPIST-1
g. This value is 0.23, while the maximum common CMF is 0.4. The range CMF = 0.23 - 0.4 is in
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agreement with the CMFs found in scenario 2 (Fig. 6.3, bottom panel), with values ranging from 0.2
to 0.3. These ranges of CMFs also comprise Earth’s value, 0.32.

Planet Data Scenario 1
M [M⊕] R [R⊕] M [M⊕] R [R⊕] CMF WMF Fe/Si

b 1.374±0.069 1.116+0.014
−0.012 1.375±0.041 1.116±0.013 0.261±0.146 (3.1+5.0

−3.1)×10−5 1.00±0.56
c 1.308±0.056 1.097+0.014

−0.012 1.300±0.036 1.103±0.015 0.239±0.084 (0.0+4.4
−0.0)×10−6 0.71±0.26

d 0.388±0.012 0.788+0.011
−0.010 0.388±0.007 0.790±0.010 0.409±0.167 0.084±0.071 1.22+1.30

−1.22
e 0.692±0.022 0.920+0.013

−0.012 0.699±0.013 0.922±0.015 0.447±0.123 0.094±0.067 1.75±1.17
f 1.039±0.031 1.045+0.013

−0.012 1.043±0.019 1.047±0.015 0.409±0.140 0.105±0.073 1.44±1.14
g 1.321±0.038 1.129+0.015

−0.013 1.327±0.024 1.130±0.016 0.399±0.144 0.119±0.080 1.33±1.29
h 0.326±0.020 0.755±0.014 0.327±0.012 0.758±0.013 0.341±0.192 0.081+0.089

−0.081 0.13+1.80
−0.13

Table 6.1.: Masses, radii and compositional parameters obtained by the MCMC analysis for
TRAPPIST-1 (scenario 1). For comparison, the second and third columns show the observed
mass and radius of each planet (Agol et al. 2021), which are the input for the MCMC.

Planet Data Scenario 2
M [M⊕] R [R⊕] M [M⊕] R [R⊕] CMF WMF Fe/Si

b 1.374±0.069 1.116+0.014
−0.012 1.359±0.043 1.124±0.016 0.259±0.032 (0.0+3.4

−0.0)×10−6 0.79±0.10
c 1.308±0.056 1.097+0.014

−0.012 1.299±0.034 1.103±0.014 0.257±0.031 (0.0+2.7
−0.0)×10−6 0.79±0.11

d 0.388±0.012 0.788+0.011
−0.010 0.387±0.007 0.792±0.010 0.241±0.032 0.036±0.028 0.76±0.12

e 0.692±0.022 0.920+0.013
−0.012 0.695±0.012 0.926±0.012 0.249±0.031 0.024+0.031

−0.024 0.78±0.12
f 1.039±0.031 1.045+0.013

−0.012 1.041±0.019 1.048±0.013 0.240±0.031 0.037±0.026 0.76±0.12
g 1.321±0.038 1.129+0.015

−0.013 1.331±0.023 1.131±0.015 0.235±0.031 0.047±0.028 0.75±0.12
h 0.326±0.020 0.755±0.014 0.326±0.011 0.758±0.013 0.232±0.032 0.055±0.037 0.75±0.12

Table 6.2.: Masses, radii and compositional parameters obtained by the MCMC analysis for
TRAPPIST-1 (scenario 2). For comparison, the second and third columns show the observed
mass and radius of each planet (Agol et al. 2021), which are the input for the MCMC in addition to
the Fe/Si mole ratio estimated for TRAPPIST-1, Fe/Si = 0.76±0.12.

I compare our CMF estimates to those of Barr et al. (2018), who use an interior model with a Fe
core, a silicate rock mantle and an ice and liquid water layer, while also computing the tidal heat
flux with a thermal model. In addition, Barr et al. (2018) do not make use of an estimate of the
stellar Fe/Si ratio to constrain the core mass fraction, and use mass estimates for TRAPPIST-1 from
Wang et al. (2017), which are shifted to lower values compared to the mass estimates we use as
input from Agol et al. (2021). Despite this, Barr et al. (2018) obtain CMF ranges compatible with
our scenario 1. For planets b, d and e, Barr et al. (2018) obtain a maximum CMF of 0.40, which is
approximately the maximum CMF we obtain in scenario 1 for planets b and c.

The WMFs we obtain for TRAPPIST-1 planets are well below 20% in the most general case (scenario
1). The maximum WMF is even lower for scenario 2, where planet h could have up to 9.2% of its
mass in ices. We compare our WMF estimates to those of Agol et al. (2021), who assume different
cases with constant CMF (18%, 25%, 32.5% and 50%) to calculate the WMF. Their interior structure
model considers a steam atmosphere with N2 as a background gas for planets b, c and d (Turbet
et al. 2020), while planets e to h are modelled with condensed phases (Dorn et al. 2018). The WMF
is strongly dependent on the assumed CMF, therefore we compare our scenario 2, where the CMF
had values between 0.2 and 0.3, with the case CMF = 0.25 in Agol et al. (2021). For the inner planets
of the TRAPPIST-1 system, we agree that they are compatible with a dry composition. Agol et al.
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(2021) estimate a maximum WMF = 10−5 for planets b, c and d, while our maximum WMFs are 3.4
×10−6 and 2.7 ×10−6 for planets b and c, respectively. In the case of planet d, we obtain a maximum
WMF = 0.064, which is several orders of magnitude higher than the estimate in Agol et al. (2021).
This is because the hydrosphere in our interior model is in condensed phases, whereas Agol et al.
(2021) consider that TRAPPIST-1 d would have a steam atmosphere in a runaway greenhouse state.
Planet d is at the very edge of the habitable zone, meaning that different atmospheric compositions
could enable the presence of surface liquid water, whereas compositions with warmer surface
temperatures would evaporate all surface water. Agol et al. (2021) assume a water-dominated
atmosphere with N2 as a background gas. In contrast, we adopt CO2 as background gas, which
affects radiative balance since it is a strong IR absorber in comparison to N2. For planets e to h, our
WMF estimates are in agreement within uncertainties with Agol et al. (2021). Nonetheless, their
mean values are lower, which could be due to the differences in EOS within the interior models. The
EOS used by Agol et al. (2021) for condensed phases are in agreement with SESAME and ANEOS
(Baraffe et al. 2008), which overestimate the density at pressures above 70 GPa (Mazevet et al. 2019).
This causes the WMF to be underestimated for similar mass, radius and CMF.
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Figure 6.3.: Top panel: 2D 1σ-confidence intervals of the CMF and WMF for scenario 1, where mass
and radius are the data. Bottom panel: 2D 1σ-confidence areas for scenario 2, where the Fe/Si
abundance ratio estimated by Unterborn et al. (2018) is considered in addition to the masses and
radii. The axes correspond to the CMF, the WMF, and the mantle mass fraction MMF = 1 - CMF -
WMF.
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Figure 6.4.: Pressure-temperature adiabats of the water layers of TRAPPIST-1 planets for their
maximum limits. For planets d to g, thicker lines indicate the PT profiles for their lower estimates,
which are non-zero. Grey line marks the pressure level P = 20 mbar.

Fig. 6.4 shows the adiabatic profiles for the maximum and minimum WMF estimates. The
atmospheres of planets b and c are not massive enough to reach the supercritical regime, having
maximum surface pressures of 128.9 and 4.9 bar, respectively. We revisit the surface pressure of
TRAPPIST-1 c with the adaptive MCMC in Sect. 6.4. The atmospheres of TRAPPIST-1 b and c are
mostly comprised of a dry convective layer, although a small, wet convective area is present at
10 mbar. Therefore, clouds would be present above the 20 mbar pressure level, which is the clear
transit radius (Mousis et al. 2020; Grimm et al. 2018). This could flatten the spectral features of
water or CO2 in transmission spectroscopy (Turbet et al. 2019; Katyal et al. 2020). Planets d to h
present condensed phases, with the surfaces being liquid (planet d) or covered in ice Ih. Planets d
to g have hydrospheres massive enough to reach 100 GPa at their base, meaning that they reach
high-pressure ices (ice VII). Noack et al. (2016) discuss that having a high-pressure ice layer in the
hydrosphere-mantle boundary is necessary to make a sub-surface ocean habitable in a water-rich
planet, since the heat from the mantle would melt the base of the ice layer. However, for WMF ≥
0.14, the pressures at the bottom of the ice layer would be to high to form a liquid sub-surface ocean
at high temperatures, rendering the hydrosphere inhabitable. This is approximately the maximum
value of our WMF within the confidence intervals. Nonetheless, the minimum values are 0 to 0.03,
which are within the habitable sub-surface ocean range.

6.1.2. TRAPPIST-1 formation scenarios
Fig. 6.5 shows the WMF trend of both scenarios with semi-major axis. We observe that, in general,
the inner planets are water-poor, while the outer planets seem more volatile-rich. This difference
in composition between the inner and the outer parts of a system is also observed in the Galilean
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moons: Io is likely a dry moon, followed by Europa with a WMF of 8%, and the volatile-rich Callisto
and Ganymede (Ronnet et al. 2017). Regarding the planet formation mechanism that could produce
the WMFs we retrive, both pebble accretion and planetesimal-driven formation could be possible.
The former can form planets with WMFs up to 5% within the ice line (Coleman et al. 2019; Liu
et al. 2020), which is in agreement with the mean value of the outermost planet, TRAPPIST-1 h, in
scenario 2. The maximum WMF estimated in the most general case (scenario 1) is 20%, which is
far below the typical WMFs produced by planetesimal accretion according to Miguel et al. (2020).
However, Kimura and Ikoma (2020, 2022) use a planet synthesis model that considers planetesimal-
driven accretion, similar to Miguel et al. (2020), but include more processes that affect the final
water content of the planet. These processes are the movement of the snow line due to the thermal
evolution of the disk, the accumulation of primordial atmospheres and the production of water in
the primordial atmosphere via oxidisation. When these mechanisms are considered, Kimura and
Ikoma (2020) obtain that 25% of their simulated planets present thick oceans (WMF > 10%) which
could be the case of the outer TRAPPIST-1 planets (e, f, g, h), while the other 75% are water poor,
which could be representative of the inner planets in TRAPPIST-1 (b, c, d). In addition, they also find
that planets interior to the snow line can accrete small amounts of water due to the sublimation of
ice in its vicinity, in agreement with Mousis et al. (2020).
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Figure 6.5.: Water mass fraction trend with semi-major axis for scenario 1 (top panel) and scenario
2 (bottom panel). Estimates from previous works are also shown for comparison.

Furthermore, in Fig. 6.5 we can recognise an increase of WMF as the distance from the host star
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increases, especially in scenario 2, where the same Fe/Si mole ratio is considered for all planets
in the system. TRAPPIST-1 d seems to present a deviation from this trend, since its mean WMF
is slightly higher than that of planet e. This can be explained from the point of view of planet
formation by a cold finger, pebble ablation or migration. A cold finger consists of a region in
the protoplanetary disk where the gas is more enriched in volatiles (Stevenson and Lunine 1988;
Cyr et al. 1998), meaning that if planet d formed in such an area, it would have accreted more
ices than other planets outside its orbit. Similarly, the vicinity of the water ice line can be more
enriched in ices thanks to the backward diffusion of vapour combined with the inward drift of icy
particles (Mousis et al. 2019). Migration could also explain the high WMF of planet d (compared to
planet e), if TRAPPIST-1 d formed beyond the snow line prior to its inward migration (Raymond
et al. 2018). Finally, the accretion of volatiles, including ices, could have been less efficient for
planet e than for planet d due to pebble ablation and ice recycling back into the disk (Coleman
et al. 2019). In addition to these formation mechanisms, the increasing WMF trend with distance
from the star could have been shaped by atmospheric escape. TRAPPIST-1 is a cool M-dwarf
that has a strong emission in the XUV. If we take into account the water mass lost due to XUV
photoevaporation (Bolmont et al. 2017), the initial WMF of planets b, c and d would be 2.37 ×10−3,
2.50 ×10−3, and 0.085, respectively. Thus, the individual atmospheric loss decreases the WMF with
time for each planet, but the general trend we observe in Fig. 6.5 remains unaffected by atmospheric
evaporation. Water may be difficult to probe in the outer planets of TRAPPIST-1 with atmospheric
characterisation observations. Krissansen-Totton and Fortney (2022) use a interior-atmosphere
model to simulate the thermal evolution of all TRAPPIST-1 planets, and they find that the outer
planets (f and g) are likely to have anoxic, cold CO2 atmospheres with a very low H2O partial pressure
due to the condensation of water on the surface. This explains the absence of spectral features in
the transmission spectrum of TRAPPIST-1 h (Gressier et al. 2022). In our interior analysis, we did
not include atmospheric modelling for the coldest planets of the system since their atmospheres
have a negligible contribution to the total radius (similar to Earth, which is 50 km or less).

We have considered so far that the water layer in TRAPPIST-1 d is in condensed phases. Nonethe-
less, its volatile layer could be composed of other atmospheric species, which would produce a
thick atmosphere. Atmospheric characterisation data has discarded atmospheres dominated by
H/He and CH4 (de Wit et al. 2016, 2018; Ducrot et al. 2020). CO2 can be produced in small-sized
exoplanets where tidal heating is a source of internal heat that favours plate tectonics and volcanic
outgassing (Papaloizou et al. 2018; Ortenzi et al. 2020). Therefore, we compare the mass and radius
of TRAPPIST-1 d with mass-radius relations for a planet with a CO2-dominated atmosphere of Psur f

= 300 bar. We find that TRAPPIST-1 d is compatible with such atmosphere and a CMF between 0.2
and 0.3, which is the range derived for the CMF in scenario 2 (Fig. 6.6).

Krissansen-Totton and Fortney (2022) adapt an interior-atmosphere evolution model for Venus to
simulate the evolution of the atmospheres in the TRAPPIST-1 planets. They find that the most likely
atmospheric composition of TRAPPIST-1 b and c (if there is an atmosphere) is CO2-dominated, with
a high concentration of O2. This concentration depends on the efficiency of O sinks and the initial
water inventory. In the case of Venus, the CO2-rich atmosphere is anoxic. Both the wet, temperate
scenario and the dry one after the runaway greenhouse phase of Venus leave behind a significant
amount of oxygen. Therefore, in Venus, oxidation of the mantle is required to remove atmospheric
oxygen and reduce oxygen levels to those we observe today. This sink could be provided by explosive
volcanism (Gillmann et al. 2022). In the case of the TRAPPIST-1 planets, concentrations of at least 1
bar in oxygen could be detectable with JWST (Krissansen-Totton and Fortney 2022). If oxygen is low
in their atmospheres, it would mean that a similar sink to that of Venus exists in exoplanets. The
surface temperature in TRAPPIST-1 b and c is higher than in Venus, so dehydration reactions of the
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mantle would be more efficient. However, in the inner planets of TRAPPIST-1 atmospheric escape is
stronger than in Venus. So while in Venus we find a hydrated mantle with a water-poor atmosphere,
TRAPPIST-1 b and c may present a dehydrated mantle with no water in the atmosphere.
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Figure 6.6.: Mass-radius relations for a planet with a CO2-dominated atmosphere with a surface
temperature of 300 bar, and an equilibrium temperature equal to that of TRAPPIST-1 d. The mass-
radius relations of a planet with no atmosphere with different CMF values are also shown for
comparison.

6.2. Multiplanetary systems
In Sect. 6.1 we found that in the TRAPPIST-1 system, the WMF presents a trend with semi-major
axis, which could be due to formation and evolution processes. To explore the compositional trends
in other multiplanetary systems, we apply the interior-atmosphere model to a sample of planetary
systems with five or more planets that have their mass and radius well-constrained. These are five
systems whose input planetary parameters are shown in Table 6.3. All planets in these systems have
irradiation temperatures greater than 500 K, which means that their surface water layer is in steam
or supercritical phases. In addition, for this analysis we consider an upper limit for the WMF =
0.8. The application of the same interior structure model to a sample of multiplanetary systems
constitutes an homogeneous derivation of their compositions. This minimizes the differences
when comparing compositional parameters (Fe and volatile contents, core radius, etc) between
models that take distinct assumptions on the interiors, such as the presence of a H/He gaseous
layer (Lopez and Fortney 2014), a condensed water layer (Dorn et al. 2015; Zeng et al. 2019) or a
steam atmosphere (Mousis et al. 2020). Therefore, we will be able to compare potential volatile and
core mass fraction trends between different systems, and assess how their general composition
constrains planet formation and evolution.
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System Planet M [M⊕] R [R⊕] ad [AU] Ti r r [K] Fe/Si

K2-1381

b 2.80+0.94
−0.96 1.442+0.071

−0.063 0.033 1291

0.77±0.07

c 5.95+1.17
−1.12 2.198 +0.066

−0.054 0.044 1125
d 7.20+1.39

−1.40 2.310+0.077
−0.068 0.058 978

e 11.28+2.78
−2.72 3.276+0.095

−0.082 0.077 850
f 2.43+3.05

−1.75 2.787+0.093
−0.085 0.103 735

g 2.45+2.92
−1.74 2.911+0.305

−0.230 0.227 494

TOI-1782

b 1.5+0.39
−0.44 1.152+0.073

−0.070 0.026 1040

0.97±0.05

c 4.77+0.55
−0.68 1.669 +0.114

−0.099 0.037 873
d 3.01+0.80

−1.03 2.572+0.075
−0.078 0.059 691

e 3.86+1.25
−0.94 2.207+0.088

−0.090 0.078 600
f 7.72+1.67

−1.52 2.287+0.108
−0.110 0.104 521

g 3.94+1.31
−1.62 2.87+0.14

−0.13 0.128 471

Kepler-113,4

b 4.3+2.2
−2.0 1.97±0.19 0.091 953

0.84±0.02
c 13.5+4.8

−6.1 3.15±0.30 0.106 883
d 6.1+3.1

−1.7 3.43±0.32 0.159 721
e 8.4+2.5

−1.9 4.52±0.43 0.194 653
f 2.3+2.2

−1.2 2.61±0.25 0.250 575

Kepler-1025,6

b 0.41±1.6 0.47±0.02 0.055 868

0.85±0.04
c -1.58±2.0 0.58±0.02 0.067 786
d 3.80±1.8 1.18±0.04 0.086 597
e 8.93±2.0 2.22±0.07 0.117 694
f 0.62±3.3 0.88±0.03 0.165 501

Kepler-807,8

d 5.95+0.65
−0.60 1.309+0.036

−0.032 0.033 990

0.97±0.08
e 2.97+0.76

−0.65 1.330+0.039
−0.038 0.044 863

b 3.50+0.63
−0.57 2.367+0.055

−0.052 0.058 750
c 3.49+0.63

−0.57 2.507+0.061
−0.058 0.071 679

g 0.065+0.044
−0.038 1.05+0.22

−0.24 0.094 588

Table 6.3.: Input data for our MCMC analysis: masses, radii, semi-major axis, irradiation temperature
(AB = 0), and Fe/Si mole ratio for the multiplanetary systems K2-138, TOI-178, Kepler-11, Kepler-
102, and Kepler-80. References: (1) Acuña et al. (2022); (2) Leleu et al. (2021); (3) Lissauer et al.
(2011); (4) Brewer et al. (2016) (5) Marcy et al. (2014); (6) Brewer and Fischer (2018); (7) MacDonald
et al. (2016); (8) MacDonald et al. (2021)

I define the variable dobs−r et = max{|Rd at a −R|, |Md at a −M |}, which quantifies the difference
between the observed data and the retrieved value for the mass and radius of a planet. If the
retrieved and the observed value have a difference greater than 1σ, the model does not agree within
uncertainties with the observation, and we can conclude that the assumption of a hydrosphere on
top of a rocky core is not compatible with the observations.
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System Planet CMF WMF dobs−r et ∆MH2 [M⊕] ∆MXUV [M⊕]

K2-138

b 0.27±0.02 0.000+0.007
−0.000 1.5 σ 0.132 0.40

c 0.23±0.02 0.13±0.04 <1 σ < 0.01 < 0.01
d 0.22±0.03 0.17±0.05 <1 σ < 0.01 < 0.01
e 0.11±0.02 0.57±0.08 <1 σ < 0.01 < 0.01
f 0.11±0.02 0.60±0.07 <1 σ < 0.01 < 0.01
g 0.12±0.05 0.55±0.18 1.3 σ < 0.01 < 0.01

TOI-178

b 0.21±0.30 0 <1 σ 0.83 0.45
c 0.30±0.02 0.02+0.04

−0.02 <1 σ < 0.01 0.21
d 0.10±0.01 0.69±0.05 1.3 σ 0.16 0.48
e 0.18±0.02 0.40±0.06 <1 σ < 0.01 0.13
f 0.22±0.03 0.28±0.10 <1 σ < 0.01 0.04
g 0.10±0.01 0.58±0.16 3.0 σ < 0.01 0.11

Kepler-11

b 0.20±0.04 0.27±0.10 <1 σ < 0.01 0.10
c 0.18±0.01 0.33±0.04 1.7 σ < 0.01 0.10
d 0.10±0.02 0.65±0.05 2.4 σ < 0.01 0.13
e 0.12±0.01 0.55±0.04 4.4 σ < 0.01 0.14
f 0.14±0.06 0.47±0.10 1.9 σ 0.56 0.06

Kepler-102

b 0.91+0.09
−0.16 0 <1 σ 0.13 0.03

c 0.95+0.05
−0.30 0 <1 σ 0.10 0.03

d 0.80±0.14 0 <1 σ < 0.01 0.03
e 0.22±0.02 0.17±0.07 <1 σ 0.01 0.03
f 0.27±0.09 0.04±0.04 <1 σ 0.02 0.01

Kepler-80

d 0.97 +0.03
−0.05 0 <1 σ < 0.01 0.35

e 0.43±0.18 0 <1 σ < 0.01 0.29
b 0.13±0.02 0.58±0.07 <1 σ < 0.01 0.11
c 0.09±0.01 0.70±0.04 <1 σ < 0.01 0.13
g 0.31±0.02 < 1.5 × 10−3 <1 σ 140 0.60

Table 6.4.: Retrieved compositional parameters for our sample of multiplanetary systems. dobs−r et

quantifies how well the assumption of a water-dominated atmosphere fits the data for each planet
(see text). ∆MH2 and ∆MXUV are the maximum atmospheric masses lost due to H2 Jeans escape
and XUV photoevaporation, respectively.

Table 6.4 displays the mean and 1σ uncertainties of the CMF and WMF, as well as the parameter
dobs−r et for all planets in the multiplanetary systems I analysed. We can see that, in some cases,
dobs−r et > 1σ simultaneously to a high WMF (more than 30%), and a retrieved radius lower than the
observed one. This indicates that despite exploring very volatile-rich compositions, the observed
radius is greater than that of a planet with a water-dominated atmosphere, which suggests that the
atmosphere is made of more volatile species, such as H and He. For planets whose density is higher
than the density of a bare rocky planet with 100% mantle composition, we set the WMF equal to
zero and let the CMF be the only free parameter, while the mass and radius are the data.

In addition to the interior composition, we also compute the mass lost in the atmosphere due
to H2 Jeans escape and XUV photoevaporation (Table 6.4). The former process occurs when the
gravitational pull of the bulk of the planet is not enough to retain the atmosphere particles whose
thermal energy is greater than the kinetic energy associated to the escape velocity (Jeans 1925).
In contrast, if the star emits strong radiation in the X-ray and ultraviolet (UV) wavelengths, this
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radiation provides extra momentum and ionizes the molecules, generating collisions between
them and raising the temperature, which leads to atmospheric evaporation (Sanz-Forcada, J. et al.
2011). We estimate mass loss rates as described in Aguichine et al. (2021), where an energy-limited
approach is taken. We also calculate mass loss of H2O due to Jeans escape, where we obtain lost
atmospheric masses less than 0.01 M⊕ for all planets in the multiplanetary systems we analyse,
except for Kepler-80 g, which presents ∆MH2O = 3.23 M⊕. We assume that the XUV flux is constant
during the saturation regime, followed by a power-law evolution in time. Then the mass loss rate
(Owen and Jackson 2012; Aguichine et al. 2021) is integrated over time under the assumption
that the total mass and radius are constant. We use as input the masses, radii and equilibrium
temperatures in Table 6.3. The inclusion of these mass loss estimates in our analysis should help
discern whether the composition of volatile-poor planets is due to their original ice content during
planet formation, or due to post-formation atmospheric escape.

6.2.1. K2-138
In Fig. 6.7, we can observe that the 1σ confidence areas of all planets in the system are aligned
along the Fe/Si iso-line that corresponds to the mean input Fe/Si value we derived from the host
stellar abundances, which is Fe/Si = 0.77. This means that the densities of all planets in the system
can be accounted for with a rocky core and mantle with a Fe/Si ratio similar to the stellar value with
a volatile layer on top. For K2-138 b, an atmosphere of 300 bar or more reproduces a radius 1.5 σ
larger (see Table 6.4) than the observed radius. If we assume the mean observed mass of planet
b, with a CMF = 0.27, being compatible with the CMF we obtain for planet b in Fig. 6.7, a steam
atmosphere with Psur f = 300 bar produces a radius of 1.461 R⊕. This radius is compatible within
uncertainties with the observed radius. Since this atmospheric pressure corresponds to a WMF =
0.01%, planet b is likely to have a very light atmosphere (Psur f < 300 bar), or no atmosphere at all.
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Figure 6.7.: 2D 1σ confidence regions of the compositional parameters in the ternary diagram for
the multiplanetary system K2-138. The brown solid line indicates the iso-line where Fe/Si = 0.77,
which is the mean value of the input Fe/Si mole ratio.

In contrast, planets c to g are very volatile-rich, with WMFs greater than 10%. Furthermore,
K2-138 g presents a retrieved radius in our analysis that is 1.3 σ greater than the observed value,
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with a high WMF (up to 80%). This indicates that the interior models, in which we assume that the
volatile layer is dominated by water, cannot reproduce the extended radius of planet g, suggesting
that its atmosphere contains H and/or He as dominant species. The mass and radius of K2-138 g is
compatible with a rocky core with a 0.1-5% H/He mass fraction (Lopez and Fortney 2014; Zeng et al.
2019).

Finally, of all planets in the K2-138 system, the planet that has had a significant atmospheric
mass loss due to Jeans escape and photoevaporation is planet b. Most of the atmosphere could be
lost during the saturation regime due to hydrodynamic escape, yielding an integrated mass loss
that constitutes up to 14% of K2-138 b total mass. This relative lost atmospheric mass of 14% is
similar to the WMF of planets c and d, which are approximately 10 to 20%. It is therefore possible
that planet b formed with an ice mass fraction similar to the current WMF of planet c, and lost its
massive H2O envelope due to XUV photoevaporation.

6.2.2. TOI-178
TOI-178 presents a clear dichotomy between the inner and the outer planets in terms of their
volatile mass fractions (see Table 6.4). The inner planets b and c are water-poor, with WMF <
6%, whereas the outer planets d to g have high WMF with a minimum value of 30%. The WMF
values of the outer planets do not follow a clear increase with semi-major axis as in the case of
K2-138 or TRAPPIST-1, which could be due to different abundances of H/He and water mixed in the
volatile layers of each planet. Furthermore, the retrieved radii of TOI-178 d and g in our MCMC are
significantly higher than their observed radii (dobs−r et > 1σ). This, combined with the high WMFs
(see Table 6.4), suggests that planets d and g have H/He-dominated atmospheres. According to our
mass loss estimates, TOI-178 b could have undergone the loss of a maximum of 0.83 M⊕ in H2 from
Jeans escape, while planet c could have evaporated 0.21 M⊕. Under these maximum atmospheric
loss estimates and the assumption of an hydrosphere, the initial volatile mass fractions of TOI-178
b and c are 0.36 and 0.10, respectively. This means that the inner, dry planets in TOI-178 could have
been water-rich at the time of their formation.

6.2.3. Kepler-11
For Kepler-11 b, the retrieved mass and radius are in agreement within uncertainties with the
observed values, which means the hypothesis of a water-dominated atmosphere is compatible with
the data, with a maximum WMF of ≃ 40%. For planet c to e, their retrieved radii are significantly
lower than the observed radius, with differences of 1.7σ, 2.4σ and 4.4σ, respectively. These, together
with high WMF values, indicate that the outer planets of Kepler-11 probably have H/He envelopes.
They might present increasing volatile mass fractions with semi-major axis since their radii differ
more from that of a planet with a hydrosphere as we move further away from the star. Nonetheless,
the outermost planet has a dobs−r et = 1.9σ, which is smaller than planet d’s value. This could be due
to the low mass of Kepler-11 f, which could have not retained a substantial part of its atmospheric
mass (0.56 M⊕) due to H2 Jeans escape.

6.2.4. Kepler-102
The three inner planets of Kepler-102 are positioned below the 100% mantle line in the mass-radius
diagram, which points to dry, rocky compositions. Thus, we assume a WMF = 0 in the MCMC
Bayesian analysis of Kepler-102 b, c, and d, and let the CMF as the free parameter, while the mass
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and radius are the observable data. We do not set the Fe/Si mole ratio as a constraint, since these
planets could have CMFs higher than would be expected from the Fe and Si content of the star due
to their high densities. We obtain CMF = 0.91+0.09

−0.16, 0.95+0.05
−0.30, and 0.80±0.14 for Kepler-102 b, c and

d, respectively. These high CMFs indicate that the inner planets of this system have interiors similar
to that of Mercury in the Solar System. During planet formation, the planetary embryos could
have accreted pebbles that are rich in Fe, which are found in the inner part of the protoplanetary
disk, close to the rock-lines (Aguichine et al. 2020; Scora et al. 2020). Alternatively, formation
beyond these Fe-rich regions of the disk would produce planets with average CMFs (0.2-0.4), but
post-formation processes could destroy part of the mantle, increasing the core-to-mantle ratio and
the CMF. These mechanisms include mantle evaporation (Cameron 1985) and impacts (Benz et al.
1988; Asphaug and Reufer 2014).

In contrast to the Mercury-like, dry inner planet, Kepler-102 e is compatible with a water-rich
planet, with a WMF ≃ 20%. The outermost planet has a WMF that ranges from zero to WMF = 0.08.
In addition, 0.02 M⊕ could have been lost in H2 due to Jeans atmospheric escape in Kepler-102 f,
which would yield an initial WMF = 0.07 in the case that planet f is dry currently. Therefore, Kepler-
102 f could have formed in an ice-abundant region of the protoplanetary disk similar to Kepler-102
e, making Kepler-102 show a dichotomy between inner, dry planets and outer, volatile-rich planets
that other multiplanetary systems in our sample present.

6.2.5. Kepler-80
Similarly to Kepler-102 b, c and d, Kepler-80 d is a Mercury-like planet with a CMF = 0.97. Kepler-80
e is also a dry, rocky planet, but with a lower CMF, being compatible with an Earth-like interior
(CMF = 0.32). The outer planets, which are Kepler-80 b, c and g, have non-zero WMF. The radius of
Kepler-80 g is 2.7 σ higher than the radius of a bare, 100% mantle planet with similar mass. This
means that planet g presents a low-mass atmosphere (Psur f < 300 bar), since the total planetary
mass of M = 0.065 M⊕ is too low to retain a more massive atmosphere. Furthermore, based on our
Jeans and XUV mass loss estimates, both atmospheric escape mechanisms could have removed
completely a H/He envelope. Kepler-80 g is also the only planet in our sample that could have
experienced significant Jeans escape of H2O, with ∆MH2O = 3.26 ×10−3 to 3.24 M⊕. This total
atmospheric loss in addition to the current one adds up to an original WMF similar to that of planet
b.

6.2.6. Compositional trends
In all the multiplanetary systems I have analysed, with the exception of Kepler-11 where all planets
are volatile-rich, there is a clear division between at least one inner, dry planet, and the outer
planets that present volatiles. Moreover, in some of the systems, it is possible to unveil a trend of
the WMF with semi-major axis. To see this more clearly, we display in Fig. 6.8 the WMF trend with
absolute incident stellar irradiation (top panel), and with the irradiation normalised to the flux of
the innermost planet in each system (bottom panel). K2-138 presents a very clear volatile trend:
the inner planets have an increasing WMF as we move further away from the star, while the outer
planets (e to g) present an approximately constant volatile content. This gradient-plus-plateau
trend can also be hinted in TRAPPIST-1, with the exception of planet d. The slight deviation of
TRAPPIST-1 d from this trend could be due to the assumption of a condensed water layer instead of
a CO2-dominated atmosphere, as discussed in Sect. 6.1.2. It would be necessary to use atmospheric
characterization techniques to confirm that the volatiles of TRAPPIST-1 d are in gaseous phase, as
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well as the composition of the envelope. The system Kepler-102 does not show the gradient part of
the trend in the inner planets, since the three of them have a volatile mass fraction of zero, but it
could potentially present the WMF plateau within uncertainties if Kepler-102 e and f have WMF ≃
8-10%. Similarly, Kepler-80 shows dry inner planets in addition to outer volatile-rich planet with a
comparable WMF, with the exception of Kepler-80 g, which might have lost most of its envelope
due photoevaporation or Jeans escape. Finally, the volatile mass fraction trend is difficult to discern
given that some of the planets in these two systems are likely to have H/He envelopes, and thus
they should be analysed with a self-consistent interior model that include H/He as a gaseous
species. For the rest of the planets, there exists a degeneracy between light H/He atmospheres
and envelopes with a higher molecular weight, such as H2O, as we consider in our analysis. If we
were to re-analyse these planets assuming a H/He envelope instead of a water-dominated one,
the volatile mass fraction of each individual planet would decrease, but the overall trend within
each system would be preserved. To break this degeneracy between atmospheric composition
and atmospheric mass, it is necessary to acquire atmospheric characterisation data. Moreover,
transmission spectroscopy in sub-Neptunes has shown that their atmospheres are not pure H/He
or water, but they are combination of both (Tsiaras et al. 2019; Benneke et al. 2019; Madhusudhan
et al. 2020). This is further supported by meteorite outgassing experiments (Thompson et al. 2021)
and atmospheric disequilibirum chemistry models (Moses et al. 2013; Guzmán-Mesa et al. 2022).

The gradient-plus-plateau trend is likely to be yielded by a combination of accretion of ice-rich
pebbles, atmospheric loss and migration in multiplanetary systems. Ice-rich pebbles could be
accreted in the vicinity of the water ice line (Mousis et al. 2019, 2021), followed by inward migration,
where the planet loses part or all of its envelope due to XUV evaporation as it gets closer to the
star, or Jeans escape if its bulk is not enough to retain the atmosphere. For K2-138 and TOI-178,
their Laplace resonances are indicative of inner planetary migration (Terquem and Papaloizou
2007; Izidoro et al. 2017; Ramos et al. 2017). For systems whose typical water mass fractions are ≃
10%, such as TRAPPIST-1 and Kepler-102, water could be simply obtained from chondritic material
within the snow line, without the enhancement produced by the radial drift of ice-rich planetesimals.
Furthermore, 10% in volatile content is the typical water mass fraction of the asteroids in the Main
Belt (Vernazza et al. 2015). This suggest that these TRAPPIST-1 and Kepler-102 could have formed
similarly to the Main Belt, where silicate material and ice were accreted within the snow line (Rivkin
et al. 2002). Therefore, the most volatile-rich systems (K2-138, TOI-178 and Kepler-11) could have
had longer migration distances than TRAPPIST-1 and Kepler-102.
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Figure 6.8.: WMF as a function of absolute irradiation (top panel), and irradiation relative to the
innermost planet (bottom panel) for multiplanetary systems. The absolute stellar incident flux is
expressed in Earth irradiation units, S⊕ = 1361 W/m2, whereas the relative irradiation is normalised
to the incident flux of the innermost planet in each system, Fi nner most . Planets with dobs−r et > 1σ
and high WMF values in our analysis are indicated in grey.

6.3. Low multiplicity systems
In this Section, I present a compilation of planetary systems with a multiplicity of less than five
planets, for which I have run our MCMC interior-atmosphere analysis. I also introduce one system,
TOI-1233 (Hoyer et al. 2022), which hosts five confirmed planets, but only two of them have masses
available. In the following subsections, I describe system by system, the interior composition of
their planets, and the implications for their formation history. The publications to which each
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planetary system corresponds is indicated at the beginning of each subsection.

Planet Ti r r [K] Scenario CMF VMF Fe/Si Section
K2-32 e 1066 Dry 0.62-0.98 0 0.80-34.2 6.3.1

K2-233 b 1121 Dry 0.20-0.70 0 0.0-5.5 6.3.1
K2-233 c 790 Dry 0.90+0.03

−0.20 0 9.35±7.05 6.3.1
LHS1140 b 379 No Fe/Si 0.49±0.07 0.03±0.07 2.17±0.83 6.3.2
LHS1140 c 709 No Fe/Si 0.59±0.05 (0.0+6.0

−0.0)×10−3 2.71±0.59 6.3.2
TOI-220 b 806 With Fe/Si 0.09±0.03 0.58±0.14 0.64±0.10 6.3.3

HD 207897 b 632
No Fe/Si 0.25±0.18 0.24±0.13 1.54±1.81

6.3.4
With Fe/Si 0.19±0.03 0.20±0.07 0.74±0.09

TOI-1233 b 1202 With Fe/Si 0.24±0.06 0.05±0.05 0.79±0.08 6.3.5
TOI-1233 c 1021 With Fe/Si 0.20±0.02 0.21±0.05 0.79±0.08 6.3.5

TOI-969 b 1223

No Fe/Si 0.19±0.16 0.50±0.09 0.55+1.07
−0.55

6.3.6
With Fe/Si 0.12±0.04 0.47±0.09 0.71±0.26
No Fe/Si 0.70±0.30 (3.8±2.0) ×10−3 ⋆ 17.0+25.8

−17.0
With Fe/Si 0.28+0.05

−0.09 (1.4+0.2
−0.3)×10−3 ⋆ 0.76+0.21

−0.26

TOI-2196 b 1856
No Fe/Si 0.0-1.0 (7.7+9.4

−3.2)×10−3 ⋆ 6.26+11.54
−6.26 6.3.7

With Fe/Si 0.24+0.06
−0.05 (6.6+3.1

−2.0)×10−3 ⋆ 0.75±0.18

K2-106 b 2275
Dry 0.49+0.16

−0.22 0 2.05±1.52
6.3.8No Fe/Si 0.63+0.19

−0.17 (5.8+8.6
−5.8)×10−5 4.75+5.27

−4.75
With Fe/Si 0.24±0.03 (9.8±7.8)×10−5 † 0.71±0.11

Table 6.5.: Mean and uncertainties of core (CMF) and volatile (VMF) mass fractions; irradiation
temperatures, Ti r r ; and Fe/Si mole ratio for planetary systems with low multiplicity. ⋆ We consider
a H/He atmosphere as volatile layer (see text). † The retrieved radius is dobs−r et = 1.7 σ larger than
the observed value. The last column indicates the subsection in which their analysis is detailed.

Table 6.5 shows the mean and 1σ uncertainties of the CMF, volatile mass fraction (VMF), and
Fe/Si mole ratio retrieved by our MCMC analysis. For planets positioned below the 100% mantle
composition in the mass-radius diagram, we set the WMF = 0 in our simulations, leaving the CMF as
the only free parameter, and the mass and radius as the observable data. For planets with volatiles,
we may consider two scenarios, depending on the system: the data are the mass and radius only;
and, if the host chemical abundances are available, the mass, radius and Fe/Si mole ratio are the
observables.

For some of these planets, the VMF is calculated assuming a H/He atmosphere, since their density
is compatible with a water-dominated envelope or a H/He layer (see for example, TOI-969 b, Sect.
6.3.6), or their radius is too inflated to be compatible with a WMF < 0.8. (see TOI-2196 b, Sect. 6.3.7).
To estimate the VMF assuming a H/He envelope, I combine the core and mantle of our interior
structure model with the mass-radius relations of Zeng et al. (2019) for rocky planets with gaseous
H/He atmospheres. I obtain the atmospheric thickness for these planets by subtracting the radius of
a rocky planet with a H/He atmosphere minus the radius of the same planet (same core and mass),
with both radii obtained by Zeng et al. (2019). We define the surface gravity, g0 =GM/R2, where
G is the gravitational constant, and M and R are the mass and radius of the core and the mantle
together, respectively. Therefore, we can express the atmospheric thickness, zatm , as a function
of the surface gravity, g0; and the H/He mass fraction, xH/He . Both TOI-969 b and TOI-2196 b are
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very irradiated, with Ti r r > 1000 K, thus the most adequate mass-radius relations that Zeng et al.
(2019) provide for these planets are those with a constant atmospheric temperature of 2000 K. To
be consistent, in our interior model we establish a surface temperature of 2000 K and a surface
pressure of 1 bar, although these parameters have a negligible effect in the total radius of a dry
mantle and core.

6.3.1. K2-32 and K2-233
K2-32 and K2-233 are two multiplanetary systems, of four and three planets, respectively (Heller
et al. 2019; David et al. 2018). Lillo-Box et al. (2020) obtained new RV data and refined the planetary
masses of these two systems. In this subsection, we analyse the inner planets of these systems,
K2-32 e, K2-233 b and K2-233 c.

Their densities indicate that these are likely to be rocky planets without any volatiles. Thus,
we perform the MCMC simulations setting a constant WMF = 0, while leaving the CMF as the
only free compositional parameter. For K2-32 e and K2-233 b, the posterior distributions of the
CMF are not Gaussian, so we express its 1 σ confidence intervals as uniform intervals instead of
a mean and a standard deviation (see Table 6.5). K2-32 e and K2-233 c are consistent with being
super-Mercuries, while K2-233 b is slightly less Fe-rich, with a maximum CMF = 0.70. In contrast
with the outer planets of their respective systems, they are rocky, dry planets, which suggests that
these two systems present the dichotomy we observed in Sect. 6.2 in other multiplanetary systems
between inner, rocky planets and outer, volatile-rich ones.

6.3.2. LHS1140
LHS1140 is an M dwarf star that hosts two low-mass planets. Their densities are compatible with
rocky planets, discarding the presence of a H/He atmosphere. The inner planet, LHS1140 c, is
highly irradiated, whereas LHS1140 b has an irradiation temperature that places it in the habitable
zone. Thus, for LHS1140 c we use our interior-atmosphere model for planets that could present
steam and supercritical phases, while for the outermost planet we assume that the hydrosphere is
in liquid and high-pressure states. LHS1140 is too dim to obtain its chemical abundances, so we
perform our MCMC analysis by using the masses and radii from Lillo-Box et al. (2020) as data.

In Table 6.5 we can see that the retrieved CMF for LHS1140 b is in the 0.40-0.50 range. If we
assume a condensed water layer, LHS1140 c presents a CMF = 0.45 ± 0.10, placing the inner planet
of the system in the CMF range of 0.35-0.55. This means that if we were to assume that both planets
have a CMF below 0.35, such as the Earth’s value (0.32), they would be unlikely to present volatiles.
Moreover, LHS1140 b is compatible with a liquid water content of zero to only 100 times the water
content of Earth. This maximum water content translates into an ocean of a maximum thickness
of ≃ 700 km, which favours a partially liquid-covered surface (eyeball state), or a surface partially
covered in ice, known as snowball state (Yang et al. 2020). The presence of a water layer is further
supported by the tentative detection of water vapour in transmission spectroscopy of LHS1140 b
(Edwards et al. 2021). Nonetheless, the detection relies on stellar contamination models, and more
atmospheric characterization observations are necessary to confirm it. For LHS1140 c, the WMF
distribution is centered in zero, with a 1σ maximum value WMF = 6 ×10−3, which is equivalent to a
surface pressure of 300 bar. This means that if LHS1140 had a high CMF (>0.4), it could present a
secondary atmosphere. Otherwise, for CMFs in the 0.0-0.3 range, LHS1140 c mass and radius are
compatible with a dry planet.
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6.3.3. TOI-220
TOI-220 b is a warm sub-Neptune recently discovered by the Transiting Exoplanet Survey Satellite
(TESS), for which Hoyer et al. (2021) derived precise mass, radius and stellar abundances. In Sect.
5.3 I show a comparison of the interior structure analysis with the adaptive and the non-adaptive
MCMC for this planet. Henceforth, I discuss the CMF and WMF values obtained in the adaptive
MCMC (see Table 6.5), although the difference between the two MCMC methods does not change
our main conclusions on this system.

The CMF of TOI-220 b is substantially lower than Earth’s value (0.32), since we use the Fe/Si
mole ratio of its host star to constrain it in our analysis, and it is less enriched in Fe (Fe/Si = 0.93)
than the Sun (Fe/Si⊙ = 0.96). We also employ the Mg/Si mole ratio to obtain a PDF in our MCMC
analysis for the Mg number, Mg# , which indicates the level of differentiation of the mantle (see
Sect. 2.1). We obtain a uniform distribution that ranges between Mg# = 0.85 and Mg# = 1.0, which
points to a highly differentiated interior. The WMF of TOI-220 b is compatible with the water
content obtained for Solar System moons, such as Titan, while its maximum limit, WMF = 0.72, is
below the mean cometary WMF (McKay et al. 2019). Nonetheless, given the degeneracy between
envelope composition and mass, TOI-220 b could also have a less massive atmosphere dominated
by H/He. This is further supported by atmospheric mass loss estimates due to Jeans escape and
XUV photoevaporation (Aguichine et al. 2021; Hoyer et al. 2021), which are low enough to suggest
that TOI-220 b has retained most of its original gas reservoir.

6.3.4. HD207897
Heidari et al. (2022) report the discovery of another warm sub-Neptune orbiting a main sequence
star, HD 207897 (TOI-1611), with TESS, providing precise mass, radius and stellar chemical abun-
dance estimates. Two sets of mean and 1σ uncertainties are calculated for the mass of HD 207897 b
with equal probabilities. We find that these masses are close enough to yield similar compositional
and atmospheric parameters in our interior structure analysis. Therefore, in Table 6.5, we present
the mean CMF, WMF and Fe/Si mole ratio obtained from both mass estimates.

In scenario 1, where only the mass and radius are considered as data, HD 207897 b can present a
CMF close to zero (100% mantle) up to almost 0.45, which is the wide range of CMFs found in bare
rocky planets via interior structure models (Plotnykov and Valencia 2020; Wang et al. 2022). The
CMF distribution is significantly narrower in scenario 2 due to the use of the stellar Fe/Si mole ratio
in the MCMC analysis, which yields a CMF ≃ 20%. This is lower than Earth’s value, because HD
207897 is less enriched in Fe than the Sun. However, the WMF distribution is very similar in both
scenarios, showing that for volatile-rich planets, the total density and radius are the two observable
parameters that constrain the volatile mass fraction. This is also the case for interior structure
models that consider a H/He-dominated envelope (Otegi et al. 2020). We conclude that HD 207897
b has a likely WMF ≃ 0.20, with a maximum WMF = 0.30, which makes it an interesting case, together
with TOI-220 b, to study the survival of gaseous envelopes in highly irradiated environments.

6.3.5. TOI-1233
TOI-1233 hosts five low-mass planets (M < 25 M⊕), with irradiation temperatures ranging from 1200
to 600 K. This makes it an interesting system to be analysed in our sample to discuss its possible
formation and evolution scenarios, similar to the multiplanetary systems studied in Sect. 6.2. Hoyer
et al. 2022 provide refined radii values for the complete system from TESS and CHEOPS data.
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However, the masses of only the two innermost planets are precise enough to provide constraints
on the interior composition. Therefore, we only perform our MCMC interior analysis for TOI-1233
b and c (see Table 6.5), adopting the masses, radii and stellar abundances provided by Hoyer et al.
2022.
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Figure 6.9.: TOI-1233 planets positions in the mass-radius diagram for planets with liquid (LW) and
supercritical (SW) hydrospheres. Grey shaded areas indicate the 1σ region of the radius estimated
by Hoyer et al. 2022 for planets d, e and f. Black dots indicate both the mass and radius obtained by
Hoyer et al. 2022 for all planets, while the red dot marks the mass limits for planet d established by
previous work (Bonfanti et al. 2021).

Under the assumption that the planetary Fe/Si mole ratio reflects the stellar Fe/Si, TOI-1233 b
could be a dry planet or have a water-dominated atmosphere that constitutes up to 10% of its total
mass. We explore the possibility of a dry rocky interior for the innermost planet, setting the WMF
= 0 and leaving the CMF as the only free parameter in our MCMC analysis. We obtain a CMF =
0.04+0.22

−0.04, which is compatible within uncertainties with the CMF derived when considering the
stellar abundances. Therefore, the planets in TOI-1233 are likely to have CMFs of approximately
20%, below Earth’s value (0.32). In addition, planet c presents a WMF between 0.16 and 0.26, being
more volatile-rich than planet b. To have an idea of the possible volatile contents of the outer
planets d, e and f, we plot in Fig. 6.9 the masses and radii obtained by Hoyer et al. 2022 for all
planets. The radii of planets d and e suggest that these planets have more volatiles than planet c, no
matter the assumed masses. However, the composition of planet f ranges from a super-Mercury,
down to a rocky planet with a thin envelope. Hence, planets b to e seem to present an increase in
volatile mass fraction with semi-major axes (and therefore, irradiation fluxes too), which we already
observed in Sect. 6.2 in other multiplanetary systems. It is interesting to note that TOI-1233 seems
to present 3:2 motion resonances (Hoyer et al. 2022), indicating inward migration, which might play
a role in producing the water mass fraction gradient in multiplanetary systems as in TRAPPIST-1
and K2-138. Finally, the low volatile mass fraction of TOI-1233 f compared to planets c to e could be
due to Jeans escape, where the solid core of the planet is not massive enough to retain the envelope.
In this case, this would be the third multiplanetary system where we observed that the outermost
planet suffers Jeans escape in contrast to the inner planets that are more volatile-rich (see also
Kepler-11 f and Kepler-80 g in Sect. 6.2.3 and 6.2.5, respectively). Radial velocity or transit timing
variation data are needed to constrain the mass of TOI-1233 and confirm this hypothesis.
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6.3.6. TOI-969
TOI-969 is a K-type star that hosts one confirmed planet, TOI-969 b, and one candidate planet.
Lillo-Box et al. (In rev.) derive precise radius, mass and host chemical abundances for this system,
suggesting that TOI-969 b is a warm sub-Neptune.

The results of our MCMC interior analysis are shown in Table 6.5. The CMF derived in scenario 2,
with the Fe/Si mole ratio as data, is compatible within uncertainties with the CMF of scenario 1.
Moreover, in scenario 1, the CMF ranges from almost zero (100% mantle) up to 0.45, similar to HD
207897 b and the general population of naked rocky planets (see Sect. 6.3.4). The WMF distribution
between scenario 1 and 2 has a negligible difference, which adds to the evidence that for sub-
Neptunes, the volatile mass fraction is mostly constrained by the density. In addition to our analysis
for water planets, we repeat our MCMC analysis assuming a H/He atmosphere, as described at the
beginning of Sect. 6.3. In scenario 1, where only the mass and radius are taken into account, the
MCMC explores CMF values from 0.40 up to 1.0, which is higher than the observed CMF of rocky
planets (Plotnykov and Valencia 2020; Wang et al. 2022). Therefore, the mass fraction of H/He in this
scenario is considered a maximum estimate. In contrast, when we consider the stellar Fe/Si mole
ratio and a H/He atmosphere, we obtain a CMF that is compatible within uncertainties with the
CMF derived in scenario 1 for a supercritical water envelope. Therefore, we are able to fit the same
mass and radius data with a WMF = 0.50 with a water atmosphere, and a VMF ≃ 10−3 with a H/He
envelope, showcasing the degeneracy between envelope mass and composition in sub-Neptunes.
Finally, by comparing scenario 2 between the water and the H/He atmosphere, we observe that
the CMF increases in the H/He case. This is due to the large portion of the total planetary mass
composed by the Fe core, since the water envelope is significantly more massive than the H/He
atmosphere.

6.3.7. TOI-2196
TOI-2196 is a single planetary system hosted by a Sun-like star, discovered by Persson et al. (2022).
TOI-2196 b is also the only warm sub-Neptune in our sample that presents a mass of more than 20
M⊕, and whose density is compatible with a WMF = 70% or more.

Hence, we exclusively perform our interior MCMC analysis for this planet assuming a H/He
atmosphere. In Table 6.5, we can see that in scenario 1, the adaptive MCMC explores all possible
CMF values, obtaining a PDF for the CMF that is uniform between 0 and 1. Nonetheless, the VMF
is tightly constrained, and its PDF is very similar to that obtained in scenario 2. This is because
for sub-Neptune and Neptune-class planets, the density and the radius are mostly determined
by the amount of volatiles, as seen in Sect. 6.3.4 and 6.3.6, in agreement with Otegi et al. (2020).
Persson et al. (2022) estimate XUV atmospheric mass loss as described in Aguichine et al. (2021).
They estimate that the initial VMF of TOI-2196 b was 35%, in contrast to its current VMF ≃ 0.6%.
This makes TOI-2196 b an interesting case to study in atmospheric loss and evolution, since it has
retained a significant part of its envelope despite its high irradiation conditions.

6.3.8. K2-106
K2-106 is a Sun-like star that hosts two planets: the ultra-short period super-Earth K2-106 b, and
the sub-Neptune K2-106 c. K2-106 b was originally reported as a very dense rocky planet, with a
CMF > 0.60 (Sinukoff et al. 2017; Guenther et al. 2017), although later radial velocity measurements
decreased its density, indicating that it was not as enriched in Fe as estimated (Dai et al. 2019).
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Rodríguez Martínez et al. (2022) re-analyse photometric data from Kepler/K2 and radial velocity
data from HIRES to refine the density of K2-106 b.

K2-106 b is highly irradiated (Teq = 2275 K), meaning that if volatiles (including water) are present
on its surface, these are in a gaseous or supercritical phase. I consider three scenarios: in scenario 1,
I assume that K2-106 b is a completely dry planet, leaving the CMF as the only free non-observable
parameter in our MCMC Bayesian analysis, while the WMF is constant and equal to zero, and the
mass and the radius are the observables. Scenario 2 is similar to scenario 1, but we do not take
any assumptions on the WMF, leaving it as a free parameter. Finally, in scenario 3 I also consider
the Fe/Si mole ratio as an observable. Its mean value and uncertainties are calculated from the
host stellar abundances provided by Rodríguez Martínez et al. (2022). The resulting value is Fe/Si =
0.672±0.094. The retrieved compositional parameters are shown in Table 6.5. In scenario 1, the
retrieved CMF is compatible to that estimated by Rodríguez Martínez et al. (2022) with the interior
model of Schulze et al. (2021), CMF = 0.45+0.14

−0.16. This interior model has two layers, a Fe-rich core
and a silicate mantle, which combined with a MCMC framework, is able to obtain the posterior
distribution function of the core mass fraction in a similar way to our model. The 1σ confidence
intervals obtained by both interior models overlap with the interval of CMFst ar = 0.29±0.06. I also
explore if the estimated CMF by our model assuming the presence of an atmosphere is compatible
with that of the star. In scenario 2, the mean value of the CMF is higher than the CMF in scenario
1, which means that both scenarios are compatible within uncertainties. In scenario 2, a higher
CMF is necessary to reproduce the observed mass and radius since a more Fe-rich bulk is more
dense, leaving more space for an atmosphere to expand with respect to the dry scenario (scenario
1). Although the estimated CMF in scenario 2 is compatible within uncertainties with our scenario
1 and with the estimate of Schulze et al. (2021), it is not compatible with CMFst ar . This means
that if K2-106 b was to reflect the CMF estimated from the abundances of its host star, it would be
very unlikely to have an atmosphere. If an atmosphere exists, its CMF would have to be greater
than 0.46, which is the lower limit of the 1σ confidence interval in scenario 2. The parameters of
this thin atmosphere are Psur f = 184.9±120.8 bar, zatm = 404±82 km, Tsur f = 4154±326 K and AB

= 0.210±0.001 of surface pressure, atmospheric thickness, surface temperature and Bond albedo,
respectively. The observed mass and radius are well-reproduced by their respective posteriors in
scenarios 1 and 2. However, in scenario 3 the MCMC Bayesian analysis can reproduce the Fe/Si
mole ratio derived from the host stellar abundances, but the mass and radius are not compatible
with their observed mean values and uncertainties. The retrieved CMF in scenario 3 is compatible
with CMFst ar , as expected, since both estimated are calculated from the chemical abundances
of the host star. In scenario 3, the retrieved mass is lower than the observed value, whereas the
retrieved radius is higher than the observed one, yielding a lower planetary density. This supports
the conclusion we reached in scenario 2: K2-106 b cannot have an atmosphere and present the
Fe/Si mole ratio (or CMF) of its host star.

6.4. JWST rocky planets
As mentioned in Sect. 4.4.2, when I run the atmosphere model within the MCMC algorithm, I need
fast computations of the OLR and Bond albedo. For this reason, in the MCMC analysis I use the
version of the atmospheric model that calculates spectra with a resolution of R = 10, since this is
accurate enough to obtain the OLR and the Bond albedo within a few seconds. However, I use
the k-correlated version of the atmospheric model to generate spectra with a higher resolution to
assess whether the atmosphere of a planet with a given mass, radius, and composition would be
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observable. Therefore, I modify the atmospheric module to take as input the k-correlated table in
its original resolution, which is R = 200. This is adequate to produce theoretical emission spectra
that can be the input for noise generators, such as Pandexo (Batalha et al. 2020) for the James Webb
Telescope (JWST).

6.4.1. TRAPPIST-1 c
TRAPPIST-1 c has been proposed to be observed in thermal emission with the Mid-infrared in-
strument (MIRI) in JWST Cycle 1 (Kreidberg et al. 2021). It will be observed with the F1500W filter
during 4 eclipses, which is the filter centered at λ = 15 µm. We analyse TRAPPIST-1 c with our
adaptive MCMC with a water and a CO2-dominated atmosphere. Fig. 6.10 shows the marginal
posterior distributions (PDF) in 1D and 2D for this analysis. The CMF agrees well with the value
obtained previously with the non-adaptive MCMC (see Table 6.2). In contrast, the distribution
of the WMF derived by the adaptive MCMC is wider than the non-adaptive one, with mean and
standard deviation values of WMFad ap = (11.0±5.6)× 10−6, and WMFnon−ad ap = (0.0+2.7

−0.0)× 10−6,
respectively. This is because the adaptive MCMC is more effective at exploring the corner region of
the compositional parameter space, where the WMFs are close to zero. More models in this region
are accepted in the posterior distribution, and therefore it becomes wider with larger standard
deviation than the non-adaptive posterior distribution. The corresponding surface pressure derived
by the adaptive MCMC is Psur f = 15±7 bar. This 1σ confidence interval must be taken carefully
since the PDF of the surface pressure does not present a Gaussian distribution shape. A WMF of
zero is also compatible with the density of TRAPPIST-1 c. Consequently, we can conclude that
TRAPPIST-1 c could have a H2O atmosphere of up to ≃ 25 bar of surface pressure, or no atmosphere
at all. The results of the adaptive MCMC (with the k-uncorrelated atmosphere model), and the
non-adaptive one with the k-correlated model of Pluriel et al. (2019), agree that a H2O atmosphere
in TRAPPIST-1 c would have a surface temperature between 1000 and 1500 K, and an atmospheric
thickness of 150 to 250 km. The retrieved Bond albedos differ by 0.05 due to the use of different
atmospheric opacity data, as we discussed in Sect. 4.6.2.

For a CO2-dominated atmosphere, we retrieve a similar CMF to the water case, although the
volatile mass fraction increases by one order of magnitude, VMF = (2.49±2.07)× 10−5. The molecular
weight of CO2 is higher than that of water vapour, producing a more compressed atmosphere for
a similar surface pressure and temperature. In addition, the radiative properties (i.e opacity) of
CO2 yields a lower surface temperature for the same irradiation conditions in comparison to a
water-dominated envelope, which contributes to a lower atmospheric thickness. As a consequence,
the models with a CO2 envelope can accommodate a more massive atmosphere for TRAPPIST-1 c
than the water models, retrieving a surface pressure of Psur f = 35±29 bar. The surface temperature
and atmospheric thickness are Tsur f = 807±102 K, and zatm = 63±12 km, respectively.

We assume the atmospheric parameters retrieved in our adaptive MCMC analysis and generate
emission spectra with their respective temperature-pressure profiles. Consecutively, we bin the
emission spectrum using the response functions of each of the MIRI photometry filters1 (Glasse
et al. 2015; Piette et al. 2022). The mean flux, 〈 fλ〉, of an emission spectrum, f (λ), observed with a
filter with transmission function R(λ), is defined in Eq. 6.1 (Stolker et al. 2020). We consider random
Gaussian noise of 100 ppm for each filter to derive the uncertainties of the mean flux (Lustig-Yaeger
et al. 2019; Piette et al. 2022).

1http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=JWST
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〈 fλ〉 =
∫

f (λ) R(λ) dλ∫
R(λ) dλ
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Figure 6.10.: PDF pyramid plot of the atmospheric parameters of TRAPPIST-1 c for H2O (left panel)
and CO2 (right panel) atmospheres. The atmospheric parameters include the surface temperature,
Tsur f ; atmospheric thickness, zatm ; albedo; and the surface pressure, Psur f . We assume the Fe/Si
mole ratio estimated in Sect. 6.1.1 (Unterborn et al. 2018).
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Fig. 6.11 shows the complete emission spectra and mean filter fluxes for TRAPPIST-1 c. We
observe that for the nIR filters (λ= 5.60 to 11.30 µm), both atmospheres have very similar fluxes
that are compatible within uncertainties, which makes it not possible to distinguish between
the two compositions in these wavelengths. For the filters F1500, F1800 and F2100, the mean
flux uncertainties of the water and the CO2 atmospheres do not overlap, allowing the different
compositions to be distinguished. Therefore, observing TRAPPIST-1 c in emission with filter F1500,
as proposed by Kreidberg et al. (2021), is well-adapted to differentiate between a water- or a CO2-
dominated atmosphere. We also consider the possibility of a bare surface in TRAPPIST-1 c, given the
high probability obtained in our MCMC analysis for a volatile mass fraction equal to zero. Hu et al.
(2012) obtain the emission spectra of bare terrestrial surfaces for different minerals. I estimate the
brightness temperature for the irradiation conditions of TRAPPIST-1 c for two minerals, a metal-rich
surface and a granitoid one, since these are the two surfaces with the highest and lowest emission
for the same irradiation conditions, respectively. I approximate the emission spectrum of these
surfaces to that of a black body with a temperature equal to the estimated brightness temperature.
The emission flux in the F1500 filter for a water atmosphere is slightly higher than of the metal-rich
surface. If TRAPPIST-1 c emission flux in this filter is 731 ppm or higher, it is indicative of a thin,
water-rich atmosphere. For very low emission fluxes (≃ 300 ppm), TRAPPIST-1 c would present a
CO2-dominated atmosphere. For fluxes between 730 to 400 ppm, TRAPPIST-1 c would have no
atmosphere, with an emission that corresponds to a bare surface. The surfaces with the lowest
emission are granitoid, feldspathic, or clay (Hu et al. 2012).

6.4.2. 55 Cancri e
55 Cancri e is a super-Earth in a close orbit (P = 0.66 days) to a bright star, for which several interior
and atmospheric hypothesis have been proposed. Madhusudhan (2012) explored a carbon-rich
interior given the high C/O ratio found for its host star, showing that in this case the planetary bulk
density would be lower than that of a silicate-rich mantle planet, such as Earth. They concluded that
a volatile layer would not be necessary to account for its density. On the other hand, a classical Fe-
rich core and a silicate mantle are compatible with a volatile envelope rich in secondary atmosphere
species. Furthermore, the absence of a H/He-dominated envelope seems likely due to the lack of
hydrogen and helium emission and absorption lines in the spectrum (Ehrenreich, D. et al. 2012;
Zhang et al. 2021). The presence of a secondary atmosphere is supported by phase curve data
from the Spitzer Space Telescope (Angelo and Hu 2017). A fully H2O-dominated atmosphere has
been discarded, since it will require the presence of water and hydrogen simultaneously in the
atmosphere due to water dissociation. Therefore, the most likely composition for the atmosphere of
55 Cancri e is a mixture of silicate compounds (Keles et al. 2022), such as HCN, detected by Tsiaras
et al. (2016), with traces of water (detected by Esteves et al. 2017), or CO2. Despite the water and
CO2-dominated atmospheres being discarded by the current data, it is still interesting to carry out
our interior-atmosphere analysis for 55 Cancri e, since the scale height of a silicate high-molecular
weight atmosphere might be similar to that of an envelope with the two compositions we consider.
The scale height influences, together with the abundances, the intensity of a line in the spectrum of
an exoplanet.
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Data H2O CO2

M [M⊕] 7.99+0.32
−0.33 7.99+0.29

−0.32 8.17±0.29
R [R⊕] 1.875±0.029 1.877±0.020 1.850±0.021
Fe/Si 0.60±0.14 0.62±0.14 0.48±0.13
CMF 0.20±0.05 0.15±0.05
VMF (6.7+7.4

−5.9)×10−5 (5.1+5.9
−4.6)×10−5

Psur f [bar] 209±93 > 300
Tsur f [K] 4161±199 4035±597 (at 300 bar)
zatm [km] 522±46 152±33 (from 300 bar)

Bond albedo 0.191±0.001 0.351±0.004

Table 6.6.: MCMC retrieved mean value and 1σ uncertainties for observable (mass, radius and Fe/Si
mole ratio), compositional (core and volatile mass fractions) and atmospheric (surface pressure
and temperature, atmospheric thickness and Bond albedo) parameters of 55 Cancri e.

Hu et al. (2021) have proposed to observe 55 Cancri e in emission spectroscopy combining
NIRCam F444W filter (3-5 µm), and MIRI’s Low Resolution Spectrograph (MIRI LRS; 5-14 µm). Thus,
we run our MCMC analysis with our interior-atmosphere model, and then use the retrieved mean
surface conditions to generate a pressure-temperature profile and a emission spectrum with a
resolution R = 200. We adopt mass and radius data for 55 Cancri e from Bourrier, V. et al. (2018) (see
Table 6.6), and host stellar abundances from Luck (2016), from which we derive a Fe/Si = 0.60±0.17.
In Table 6.6, we observe that a water-dominated atmosphere reproduces well the observed data,
with a surface pressure higher than 200 bar, whereas the CO2 envelope is not extended enough
to match the density of 55 Cancri e, yielding a more dense interior. At temperatures higher than
4000 K, CO2 would not be the dominant species in a C-rich atmosphere, but CO. This changes
the emission of the atmosphere as CO is a different absorber from CO2. A CO-rich atmosphere
could also explain the low-density of 55 Cancri e in this scenario, since CO has a lower molecular
weight than CO2, yielding a larger atmospheric scale height. When H/He is not included in the
interior modelling, water as a trace species is necessary to explain the low density of 55 Cancri e,
since a purely dry silicate atmosphere will have a smaller thickness than a CO2 atmosphere due
to their heavier molecular weights under similar atmospheric surface conditions. Adding silicate
absorbers decreases the total planetary radius in H/He envelopes (Misener and Schlichting 2022).
However, new models are necessary to explore the effect of silicates in atmospheres that have lost
their primordial H/He. A planet with no volatiles could match the low planetary density if the core
and the mantle where less dense than that of an Earth-like interior, pointing to a carbon-rich mantle
as suggested by Madhusudhan (2012). The emission spectrum in this scenario would be that of a
bare surface, requiring terrestrial surface models such as the ones presented in Hu et al. (2012).

Henceforth, I generate an emission spectrum for the water-rich atmosphere. I input the emission
spectrum calculated with MSEIRADTRAN to Pandexo (Batalha et al. 2020), JWST observation and
noise simulator. I assume two eclipse observations, with a baseline of 3.2+1.6 = 4.8 hours of total
observing time. I select the automatic optimized number of groups per integration, as well as a
saturation limit of 80%, as indicated by Hu et al. (2021). I adopt a constant minimum noise floor of
100 ppm, similarly to TRAPPIST-1 c. Fig. 6.12 shows the complete emission spectrum of 55 Cancri e
from 3 to 14 µm, thanks to the combined simulated spectra of NIRCam 4.44 µm filter and MIRI LRS.
We notice that for wavelengths below ≃ 3.5 µm, the noise is too high to distinguish any spectral
lines. Nonetheless, the rest of the spectral coverage of the proposed observations have low noise
level, which makes the spectral features of water easy to identify with JWST in the high-molecular
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weight atmosphere scenario of 55 Cancri e.
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Figure 6.12.: Emission spectrum with the k-correlated, high-resolution MSEIRADTRAN model for a
water-rich atmosphere in 55 Cancri e with NIRCam and MIRI LRS.

6.5. Planet composition properties
In this section, I gather together the data obtained from the individual analyses of all planetary
systems I performed in Sect. 6.1 to 6.4, and discuss the properties I observe in our sample in the
context of the general low-mass planet population. This population presents two characteristic
peaks in the radius histogram, with a gap in between these two peaks. The first peak is located
at R = 1.3 R⊕, where its planets (super-Earths) have densities consistent with a rocky, volatile-
poor composition. The second peak is found at R = 2.4 R⊕, corresponding to the volatile-rich
sub-Neptunes. This gap is known as Fulton gap (Fulton et al. 2017; Fulton and Petigura 2018), and
it indicates that planets with radii between 1.5 R⊕ and 2.0 R⊕ are scarce in the low-mass planet
population. Our sample has 46 exoplanets whose radii span a wide range values, from 0.5 to 4.5
R⊕, representing the sub-populations of both super-Earths and sub-Neptunes. This can be seen in
Fig. 6.13, where I show the mass-radius diagram of our sample, with their respective distribution
function histograms. The grey circles indicate the sample from the NASA Exoplanet Archive2. I
selected this sample for planets with masses below 30 M⊕, that also have available mass and radius
measurements with their respective uncertainties.

2https://exoplanetarchive.ipac.caltech.edu. Updated on June 28, 2022.
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Figure 6.13.: Mass-radius diagram and their respective histograms of our sample of planets (blue
circles), together with a larger sample (grey circles) from NASA Exoplanet Archive. Theoretical
relationships for different CMFs are shown for dry planets, as well as for varying WMFs for water-
rich planets, obtained with MSEI, our interior-atmosphere model (Brugger et al. 2017; Acuña et al.
2021). In addition, I also plot mass-radius relations for H/He-rich planets with Ti r r = 2000 K from
Zeng et al. (2019).

After having checked that our sample presents planets from the two low-mass sub-populations, I
proceed to display the water mass fraction and the core mass fractions. I discussed in the analyses
of TRAPPIST-1 (Sect. 6.1.2), HD207897 (Sect. 6.3.4), and TOI-2196 (Sect. 6.3.7), that the WMF
estimates are very similar between scenario 1 and 2 for the same planet, especially for volatile-rich
planets. Hence, for the WMF histogram I select only one of the two scenarios when a planet has
been analysed under both, to avoid having the same planet repeated in the sample. In Fig. 6.14, I
show the total radius as a function of WMF for our sample, with their respective histograms.
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Figure 6.14.: Water mass fraction-radius diagram and their respective histograms of our sample of
planets (blue circles). We show a linear fit (black) for planets with R > 1.9 R⊕. The grey lines indicate
the realizations of the fit within the bootstrap method used to estimate the uncertainties of the
slope and the intercept.

We can see that super-Earths (R = 1.3 R⊕) correspond to planets whose WMF range between zero
and 0.1, where the WMF histogram shows that the distribution is centered between WMF = 0 and
WMF = 0.02. In contrast, the sub-Neptune population (R = 2.4 R⊕) is constituted by planets with
WMF from 0.2 up to the maximum limit we set in our MCMC simulation analysis, which is WMF =
0.7. The WMF distribution for sub-Neptunes seems mostly uniform, although there is a hint for
a gap at WMF = 0.3 - 0.4. Pebble-driven formation can generate planets with ice mass fractions
above 15%, although more than 30% are difficult (Liu et al. 2020). Moreover, Gupta and Schlichting
(2019) find that, with their core-powered mass loss model, the Fulton gap with both the super-Earth
and sub-Neptune peaks can be reproduced with planet bulks whose ice mass fraction is less than
20%. Taking into account that for these sub-Neptune planets there exists a degeneracy between
envelope composition (water vs H/He) and envelope mass, the planets in our radius-WMF diagram
with WMF > 0.4 could be rich in H/He instead of water. In this case, the gap at WMF = 0.3-0.4 could
be a transition between the water-rich planets with a maximum WMF ≃ 0.20-0.25, and planets
with a non-negligible amount of H/He in their atmospheres. Nonetheless, the gap in the WMF
distribution could also be an effect due to the size of our sample, being necessary to increase the
number of planets in the sample to confirm this.

I select a sub-sample of the exoplanets shown in Fig. 6.14, with the selection criteria of R =
1.9 R⊕. For this sub-sample of super-Earths, the radius is uncorrelated to the WMF, with a Pearson’s
correlation coefficient rW MF−R, super E ar th = -0.098. This is indicative that the radius is mostly
determined by the total mass and the core mass fraction for R < 1.9 R⊕. On the contrary, for sub-
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Neptunes (R > 1.9 R⊕), I estimate a correlation coefficient rW MF−R, subNeptune = 0.66, suggesting a
correlation between radius and water mass fraction for these planets. I fit by regression a linear
relation between radius and WMF (Fig. 6.14, black), and estimate the uncertainties of the slope and
the intercept by combining the bootstrap and the Monte Carlo (MC) methods to take into account
simultaneously the uncertainties and the dispersion of the data points. I obtain a slope of a = 0.24 ±
0.47 R⊕, and an intercept b = 2.00 ± 0.20 R⊕ for R(xH2O) = a ×xH2O +b. This empirical radius-WMF
relation can be useful to infer the typical radius of sub-Neptunes given an ice water mass fraction,
for example in planet population synthesis, where the observed distribution of the radius can be
linked to that of the initial water content of the planet embryos (Mordasini 2018).
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Figure 6.15.: Water mass fraction (upper panel) and lost atmospheric mass (lower panel) as a
function of total planetary mass. The mass-WMF diagram includes all analysed planets (dark blue),
while the lost mass diagram shows only planets in multiplanetary systems, since these are the only
ones for which we have Jeans and XUV photoevaporation mass loss estimates.

Similarly to the radius-WMF diagram, I compare the water content with the total planetary mass
for our sample of analysed planets. In Fig. 6.15 (upper panel) we observe that the planets in the
lower mass range, M < 2.5 M⊕, are confined within a WMF ≤ 0.10, while planets with more than
2.5 M⊕ have very diverse compositions, from dry (WMF ≃ 0) up to our model’s upper limit of WMF
= 0.70. Within these two quadrants in the mass-WMF diagram, no correlation is observed between
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the two variables. This suggests that some process (or processes) prevent planets in the low range
of mass from accreting large volatile reservoirs during planet formation, or conserving them during
planet evolution. Planetesimal accretion is able to produce planets with WMF > 30%, being mostly
efficient for M < 5 M⊕ (Miguel et al. 2020), while pebble accretion can form planetary low-mass
embryos with ice mass fractions up to 30% in turbulent disks (Liu, Beibei et al. 2019; Liu et al.
2020). Therefore, the initial formation of very low-mass planets with WMFs greater than 10% is
perfectly feasible. This highlights the loss of the volatile reservoir as the cause of the gap in the
mass-WMF diagram. Jeans atmospheric escape is more dependent on the planetary bulk mass
than XUV photoevaporation, which is mostly caused by the high-energy emission of the stellar
host. To test whether the gap in the mass-WMF diagram is produced by Jeans escape, I display
in Fig. 6.15 (lower panel), our Jeans mass loss estimation for multiplanetary systems (see Table
6.4) as a function of total planetary mass. For planets with very low Jeans escape atmospheric loss
(∆MH2 < 10−2 M⊕, their total masses are uniformly distributed. However, planets with a substantial
atmospheric loss by Jeans escape (black diamonds) are confined within the M = 0 to ≃ 3 M⊕ mass
range, whereas planets with strong XUV photoevaporation (orange squares) disperse over the whole
total low-mass planet range (0 to 15 M⊕, as seen in Fig. 6.15, lower panel). Thus, Jeans atmospheric
escape is likely to be the mechanism responsible for the lack of volatile-rich planets at M < 3 M⊕ in
the mass-WMF diagram.
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Figure 6.16.: CMF-radius diagram and their respective histograms for all planets in our sample.
Scenario 1 corresponds to CMF estimates obtained based only on mass and radius data, while in
scenario 2, the Fe/Si mole ratio is considered in addition to the mass and the radius.

In Fig. 6.16, I show the total planetary radius as a function of CMF, separating the data depending
on whether we considered the Fe/Si mole ratio in our MCMC analysis (scenario 2) or not (scenario
1). For scenario 1, most of our estimates are for planets whose radius is below 1.9 R⊕. For the three
sub-Neptunes in scenario 1, the CMF presents large 1 σ confidence intervals, since their radius is
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mostly determined by the mass and the volatile mass fraction. I select the super-Earths (R < 1.9 R⊕)
in scenario 1, and I calculate Pearson’s correlation coefficient. I obtain rC MF−R, super E ar th = -0.13 ±
0.10, which is compatible with a zero value, indicating that there is no correlation between the two
variables. This selection contains planets that, despite being dominated by refractories, present
thin envelopes. This might be contributing to the lack of correlation we observe in scenario 1
for super-Earths. Therefore, I choose the dry scenarios within scenario 1 data, where the WMF
is constant and equal to zero. In some of the dry scenario 1 cases, the assumption of WMF = 0 is
not enough to explore the full 1 σ confidence interval of the mass and radius input data with the
MCMC, especially the total mass. This means that we need to combine dry and wet simulations
to explore the complete mass-radius region. I discard these cases, leaving us with five pure dry
scenario 1 planets: TOI-178 b, Kepler-80 d and e, K2-233 b, and K2-106 b. This sample is not large
enough to draw any conclusions on the radius-CMF relations of dry low-mass planets. Therefore,
I conclude that super-Earths in our sample have a wide variety of CMFs, from CMF = 0.20 up to
more than 0.90. We need a larger sample of rocky planets with precise masses to determine whether
there is a correlation between radius and CMF for rocky, dry planets in scenario 1. In scenario 2, I
estimate Pearson’s correlation coefficient rC MF−R, scenar i o2 = -0.74 ± 0.07, which indicates that the
radius is correlated to the CMF. This correlation is even stronger for planets with R < 3 R⊕ (see Fig.
6.16), for which the correlation coefficient is r = -0.81. In addition, in scenario 2, the stellar Fe/Si
mole ratio produces a CMF distribution whose mean and dispersion are lower than those of the
CMF distribution in scenario 1. In the former, the mean CMF = 0.19, with a standard deviation of
0.07, while for the latter the CMF distribution is centered at CMF = 0.53, with a standard deviation
of 0.27. Plotnykov and Valencia (2020) and Schulze et al. (2021) find that the primordial stellar
CMFs (equivalent to our scenario 2) also have a narrower distribution than the CMF distribution
calculated with the densities of rocky planets only. Plotnykov and Valencia (2020) select planets with
less than 25% uncertainties in mass and radius, and whose position in the mass-radius diagram
is below the 100% mantle composition line, named the Rocky Threshold Radius (RTR), while I
do not carry any selection in our sample. Despite this difference, our general CMF agrees within
uncertainties with their estimate (CMF = 0.24+0.33

−0.18) for scenario 1. In scenario 2, our mean value
is the lower limit of their 1 σ confidence interval (CMF = 0.32+0.14

−0.12), being 10% lower than their
mean estimate. Since the CMFs have narrow uncertainties when the stellar Fe/Si is considered,
scenario 2 might be more sensitive to selection effects than scenario 1. In our sample, I not only
include planets below the RTR, but also planets above it, with WMFs ranging from 10% up to ≃
50%. These planets might be lowering the mean of the general distribution of the CMF in scenario
2, in comparison to a sample that would only include strictly dry planets. Additionally, the stellar
Fe/Si mole ratio of our sample is Fe/Si = 0.82 ± 0.10, whereas Plotnykov and Valencia (2020) have a
sample whose distribution is centered at the solar value (Fe/Si⊙ = 0.97). Therefore, our sample of
planets in scenario 2 might be hosted by stars that are Fe-poor compared to the Sun, producing an
overall CMF that is lower than an Earth-like CMF ≃ 0.32.

Finally, I explore how the WMF and CMF are affected by the uncertainties of the mass, radius and
stellar Fe/Si data. In Fig. 6.17 (upper left panel), we can observe that there is a hint of a correlation
between the uncertainty of the WMF and the radius error for sub-Neptunes. Pearson’s correlation
coefficient for ∆xH2O vs ∆R is r = 0.67, while the mass presents a coefficient of r = 0.60, indicating
a slightly weaker correlation. This agrees with Otegi et al. (2020), who find that the uncertainty
of the radius of sub-Neptunes determines mostly the error bars of the volatile mass fraction in
comparison to the mass. This is because an increase of VMF will change significantly the radius of
the volatile layer, and thus the volatile radius ratio, while the atmospheric mass will still remain
very small compared to the mass of the core or the mantle. In the case of super-Earths, we do
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not observe any trends between the uncertainties of the WMF and the data. We can therefore
conclude that only for sub-Neptunes, an improvement of the data uncertainties (especially the
radius) entails a refinement of the water content. For super-Earths, we only find a correlation
between the uncertainty of the radius and the errors of the CMF in scenario 2 for very rocky planets
(R < 1.5 R⊕). This confirms that an improvement of the observational error bars for planets with
rock-dominated compositions yields a reduced uncertainty in the CMF only (Otegi et al. 2020). For
sub-Neptunes, the uncertainties of the CMF in scenario 2 are completely uncorrelated to the errors
of the mass and radius (see Fig. 6.17, lower left), since for R > 1.9 R⊕, the CMF is determined by the
Fe/Si mole ratio.
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Figure 6.17.: WMF and CMF absolute uncertainties as a function of mass and radius relative errors.
The panels on the right corresponds to sub-Neptunes (R > 1.9 R⊕), while the left-side panels display
uncertainties for super-Earths (R < 1.9 R⊕).
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7. Discussion

In this Chapter, I discuss the caveats and limitations of the interior-atmosphere model I developed
in this thesis.

The first of the limitations relates to the fixed composition we consider of the mantle. When a
mantle forms, its chemical components are fractionated into different minerals. The EOSs of the
chemical components (Mg2SiO4, SiO2, FeO) are used to calculate the final combined EOS of the
mineral mixture following the additive volume law (Nettelmann et al. 2008), which means that
the contribution of each chemical component to the mixture EOS depends on its concentration,
which is different for each mineral. This fractionation is usually calculated by assuming chemical
equilibrium and Gibbs minimisation (Dorn and Lichtenberg 2021). Therefore, we can conclude
that mantles with different mineralogies present different EOS for their mantle mixtures. In our
interior model, we have considered that the mineralogy is similar to that of Earth (Brugger et al.
2016, 2017). However, the evolution of a water-rich planet on long time scales can produce changes
in the minerals that compose the mantle. Spaargaren et al. (2020) find that the compositional
profile of the final solid mantle after magma ocean crystallisation depends mainly on the initial bulk
Mg/Si. However, Lichtenberg (2021) develops an interior evolution model that includes a detailed
description of redox reactions. These reactions can change the initial primitive composition of
the mantle. The efficiency of these reactions, and therefore the extent with which they change
the primordial composition of the mantle depends on the accretional heat. Consequently, sub-
Neptunes may present more redox reactions that change the thermal evolution and composition of
the mantle compared to the primordial one. The EOS of the different chemical components might
not change, but the combined EOS of the final mixture (the minerals) is different. In addition, the
solubility (ability of rock to mix with water) affects mantle EOSs as well (Dorn and Lichtenberg
2021). Solubility depends on the thermal evolution (Krissansen-Totton and Fortney 2022), so this
parameter is also a source of variation in the mantle EOS due to planetary evolution. There is an
available implementation of the mantle in our interior model (Brugger 2018) that uses Perple_X
(Connolly 2005, 2009). Given a mantle mineralogy, Perple_X computes the Grüneisen parameter
and density. Therefore, coupling this implementation of the interior model with the atmosphere
model has the potential to provide an interior-atmosphere model that reflects the changes in the
mass-radius diagram due to different mantle mineralogies. An additional interior evolution model
would be necessary to provide the final mineral composition as a result of the planet’s thermal
evolution, such as the models presented in Krissansen-Totton and Fortney (2022) and Lichtenberg
(2021).

Other chemical modifications in the mantle and core composition can be taken into account as
well. Examples on how this is Dorn et al. (2015), where the effect of light elements in the mantle
(Na, Ca, Al) on the mantle’s EOS is obtained with the NCFMAS model chemical system. Similarly,
Unterborn et al. (2016) use BurnMan, which is a self-consistent thermoelastic compression calcu-
lator. They find that not including light elements in the core can lead to an overestimation of the
core’s density of 20%, which can increase the total planetary density by 1 g/cc. An increase of 1 g/cc
shifts downwards the mass-radius relationship of an Earth-like planet by 0.05 R⊕. The inclusion
of an upper mantle (different mantle phase transitions) can increase the planetary radius of an

118



7. Discussion

Earth-like planet by 0.02 R⊕. Modifications in mantle composition and mantle mineralogy have
more secondary effects on the total radius compared to these two parameters (< 0.02 R⊕).

Likewise, a different chemical composition in the ices and liquid water may affect the thickness
of a condensed water layer. The effect of incorporating salts in water decreases the freezing point of
water. For a shallow ocean like the one on Earth, increasing the salinity would maintain a higher
percentage of the hydrosphere in liquid instead of low pressure ice, compared to a pure water ocean
layer. Since the density of liquid water is lower than that of ices, the inclusion of salty water in the
interior model may yield a higher radius for the same planetary mass, and water and core mass
fractions. The extent of this increase in radius for an Earth-like planet is yet to be explored, but
it could be calculated by our interior structure model if the EOS of water was changed to that of
seawater, such as that of Schmidt et al. (2018). For water-rich planets, not only the phase transitions
between liquid water and high pressure (HP) ices may change, but also the density itself of the high
pressure ices. Experimental works report both a change of the volume of the lattice structure in HP
ices, which is only explored up to a temperature of 300 K (Journaux 2022). Hernandez et al. (2022)
provide a state-of-the-art EOS for water with NaCl incorporation in HP ices, obtained by combining
available experimental data and molecular dynamics simulations. The effects of salty water on
habitability (Olson et al. 2020; Journaux 2022) and climate (Olson et al. 2022) in exoplanets have
been widely explored. However, the extent of its effect on the mass-radius relationships remains
unknown. The EOS presented in Hernandez et al. (2022) could be incorporated in our interior
structure model to investigate this effect.

The assumption of a H2O or CO2-dominated atmosphere is quite limited given the diversity in
composition that exoplanet atmospheres can have. The modifications in the interior-atmosphere
model to include other chemical compounds would be:

• Implementation of the EOS of these gases in the atmospheric model to calculate the atmo-
spheric thickness. For H/He, the EOS is non-ideal (Chabrier et al. 2019), while other gases
found in secondary atmospheres, such as N2, could be assumed to be ideal. The thickness of
the atmosphere for the same pressure-temperature (PT) profile should be lower than that of a
pure water atmosphere, since adding these compounds increases the mean molecular weight.
If H/He is included, then the mean molecular weight decreases, yielding a more extended
atmosphere.

• Opacities for H/He, N2 and other gases. These opacities would be line opacities (k-tables),
collision-induced absorption (CIA) and Rayleigh scattering opacities. In comparison to H/He
and N2, CO2 and H2O are strong greenhouse gases, so including the former gases may lower
the surface temperature under the same irradiation conditions, producing a colder PT profile.
This lowers the altitude at which clouds form, making the cloud layer deeper, and enhancing
its effect in emission and transmission spectra (flatten spectral lines).

• The inclusion of more diverse chemical compounds, such as metal hydrides, metal oxides or
ion species (H-, Ca+, Fe+) may modify the atmospheric PT profile by producing an isothermal
layer in the middle of the convective layer (Malik et al. 2019). This PT profile is warmer
(by 500 K) in the near-surface region of the atmosphere, which may lead to more extended
atmospheres, although isothermal radiative layers are expected to decrease the atmospheric
thickness, so the two effects may cancel out. Silicate vapour produces a radiative layer near
the surface, decreasing the thickness of the atmosphere compared to a convective atmosphere
(Misener and Schlichting 2022). Temperature inversions in the upper atmospheres of hot
sub-Neptunes may occur due to the absorption of short-wavelength stellar irradiation by TiO,
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VO (seen in hot Jupiters), Fe and alkalis. For a hot Neptune of of an equilibrium temperature
of 2100 K and a solar composition, Moses et al. (2022) estimate that the inversion starts at a
pressure of 100 mbar. Therefore, the pressure range between 100 mbar and our transit radius
pressure, 20 mbar, might be affected by inversions, producing a slightly shorter atmospheric
thickness. Interior-atmosphere models with H/He dominated atmospheres are required to
measure the extent of this effect on the total radius, and 2D and 3D models may be needed
to simulate their effect on emission spectra. Temperature inversions are not expected in
super-Earths (Miller-Ricci and Fortney 2010; Innes and Pierrehumbert 2022).
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In this thesis, we present a self-consistent model built to obtain the internal compositions and
structures of low-mass planets given their observed mass and radius, irradiation conditions, and
their host stellar abundances. I developed this model by starting with the interior model version
of Brugger et al. (2017), who had a comprehensive description of a Fe-rich core, a silicate mantle,
liquid and high-pressure ice phases, being only adapted for planets with an Earth-like irradiation.
Many of the planets we discover are highly irradiated, which means they cannot sustain liquid
or ice water on their surfaces. To make the model applicable to highly irradiated exoplanets, it
required a thorough study of the equation of state (EOS) and Grüneisen parameter from different
formulations. I concluded that the M19 formulation (Mazevet et al. 2019) is the most appropriate
one. This formulation is consistent with experimental data in the supercritical regime of water. For
higher temperatures and pressure in the plasma phase of water, it is based on quantum molecular
simulations, complementing the experimental data to cover the conditions reached in planetary
interiors. Additionally, I revised another version of the interior model for icy planets (irradiations
below that of Earth), and improved the accuracy of the ice phase changes.

Consecutively, the complete model for supercritical planets has been assembled by coupling
together our interior model and an atmospheric model within a MCMC Bayesian algorithm. The
supercritical water layer in the interior model goes down to a pressure of 300 bar. Therefore, for
pressures below 300 bar, it is necessary to use an atmospheric model. In addition, the atmospheric
model is also needed to calculate the atmospheric thickness, which together with the bulk radius
obtained by the interior model, constitute the total planetary radius. The atmospheric model is also
essential to carry radiative transfer calculations to compute the surface temperature at which the
atmosphere is in radiative-convective equilibrium. Radiative-convective equilibrium is established
when the emitted radiation equals the absorbed radiation. Consequently, the atmospheric model
calculates the outgoing longwave radiation and the Bond albedo to calculate these, respectively. The
bulk radius, which is the radius from the center of the planet up to the top of its outermost layer, is
the output of the interior model and a necessary input for the atmospheric model, while the surface
temperature is an input to both models. This means that the assembly of the interior-atmosphere
model is not straightforward. Therefore, I developed an algorithm to couple the interior and the
atmosphere self-consistently, allowing us to obtain the total radius and surface temperature of a
highly-irradiated planet given its mass, core mass fraction, and water mass fraction.

The initial interior-atmosphere coupling was done by using grid files of the atmospheric parame-
ters, instead of running the interior and the atmosphere models simultaneously. Multiple input
files where required to make the model flexible enough to apply it to surface pressures below 300
bar. These grids also had the disadvantage that no spectra were being generated, which would be
useful to predict observations. Therefore, I further continued the development of the atmospheric
model to run it at the same time as the interior model. I changed its EOS to an EOS valid at high
temperatures (T > 2500 K), which is necessary to estimate the atmospheric thickness. In addition,
we updated the atomic opacity data (k-tables), that enables the atmospheric model to be more
flexible in the spectral and g-point binning. This flexibility in g-point selection permitted me to
adapt the atmospheric model to the k-uncorrelated approximation. A flexible spectral binning
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allowed me to produce a version of the k-correlated atmospheric model that produces emission
spectra at higher resolution (R ≃ 200), which is useful to assess observability with atmospheric
characterization facilities, such as JWST. The low-resolution, k-uncorrelated version of the atmo-
spheric model (R ≃ 10), is used only for fast OLR and Bond albedo calculations within the MCMC
framework.

We have a self-consistent interior-atmosphere forward model, that I optimized and included in a
user-friendly Python interface. I also implemented it within a MCMC Bayesian algorithm to derive
the posterior distribution functions of the non-observable variables, which are the CMF, WMF, and
the atmospheric parameters of water-dominated and CO2-rich atmospheres.

The model was used to perform the analysis of various planetary systems during the course of its
development. We first applied it to the well-known planetary system TRAPPIST-1. Our results on
this system can be summarized in three points:

• The most dense planets in the system have densities similar to that of Earth, suggesting that
they have not undergone post-formation processes that could increase their Fe-to-Si ratio
(collisions, mantle evaporation). We retrieve the Fe/Si mole ratio of each individual planet
based on masses and radii, and define the system’s common Fe/Si as the range where the
individual 1σ intervals of the Fe/Si mole ratio overlap. TRAPPIST-1 common Fe/Si range is
0.45 - 0.97, which is also in agreement with the possible Fe/Si mole ratio of the host star. This
Fe/Si range is equivalent to a common CMF = 0.23 - 0.40, which includes an Earth-like core
mass.

• The water mass fraction presents a trend with semi-major axis (or incident stellar flux). This
trend consists of an increase of water content as we move further away from the star for the
inner planets (b to e), followed by the constant WMF of the outermost planets (f to h).

• TRAPPIST-1 d seems to be the only exception to the trend within the system, since it presents
a slightly higher WMF than planet e in our initial analysis, where we considered that its
hydrosphere is a pure condensed water layer. However, we find that TRAPPIST-1 c’s density
and incident flux are also compatible with a CO2-dominated atmosphere in equilibrium, with
a surface pressure of ≃ 300 bar. This suggests that water could be present in gaseous form in a
secondary atmosphere, yielding a lower volatile mass fraction than TRAPPIST-1 e’s WMF.

We carried a similar analysis on a sample of other multiplanetary systems to derive in a homo-
geneous manner their composition and further search for any compositional trends. The main
findings of our homogeneous interior analysis are:

• Multiplanetary systems show a clear separation between the inner, dry planets; and the outer,
volatile-rich planets.

• The system K2-138 presents the gradient with a plateau similar to the one we highlighted in
the TRAPPIST-1 system. Kepler-102 could potentially present a constant WMF in the outer
part of the system as well, given the uncertainties of the composition of its outermost planets.

• Other systems, such as Kepler-11, Kepler-80 and the inner planets in TOI-178, present only
a gradient in WMF. We are able to explain exceptions to this trend within each system with
Jeans atmospheric escape and/or XUV photoevaporation.
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• Despite not including H/He envelopes in the current version of our interior-atmosphere
model, we are able to identify planets that present a H/He-rich atmosphere, based on the
difference between the observed and the retrieved planetary radius.

• Dry, high-CMF planets are always located in the innermost part of the system.

These results give insights into the formation and evolution of low-mass planets in multiplanetary
systems. The gradient-plus-plateau trend could be shaped by XUV photoevaporation (or core-
powered mass loss) for the inner planets gradient, while the constant WMF could be produced
by the formation in the vicinity of the water ice line of the outermost planets, with later inward
migration to their current position. In addition, planets with a CMF similar to that of Mercury could
be formed in the vicinity of rocklines, or undergo collisions or mantle evaporation that strip away
their silicate layer.

Our interior-atmosphere model can also be used to assess the observability of the atmospheres of
rocky Earth-sized planets and super-Earths. We derive the expected emission spectra for TRAPPIST-
1 c and 55 Cancri e to simulate observations with JWST. This required a prior modelling of the
interior of 55 Cancri e to constrain the most likely planetary surface conditions. We find that:

• TRAPPIST-1 c could have a H2O-dominated atmosphere of up to 25 bar of surface pressure,
or no atmosphere at all. A CO2-rich envelope would be have higher surface pressures, and
therefore it would be more massive than the water case. For λ> 12.8 µm, we might be able
to distinguish between these two compositions by observing with JWST’s photometric filters
F1500, F1800 and F2100.

• For 55 Cancri e, a pure CO2 atmosphere is not extended enough to explain its low planetary
density. A massive envelope with more than 300 bar of surface pressure that contains water is
necessary to fit its low density, since its molecular weight is lower than that of CO2.

• A combination of observations with NIRCam and MIRI LRS of 55 Cancri e will allow us to
detect water spectral lines for λ> 3.5 µm, where the noise level is low.

The derivation of compositional parameters, and the constraints they provide on planet for-
mation mechanisms, as well as the assessment of the observability of atmospheres, are the main
applications of the model. To achieve a proper coupling of the atmosphere and the interior, I have
also explored the requirements that coupled interior and atmosphere models need to follow to
obtain accurate and precise estimates on the composition of low-mass planets. We highlight that:

• The choice of the EOS and Grüneisen parameter formulations for supercritical water in
interior models with a water envelope can produce differences of up to 20% in radius. Other
formulations (Duan and Zhang 2006) tend to overestimate the radius compared to the others
we considered in this thesis, namely M19 (Mazevet et al. 2019), and IAPWS95 (Wagner and
Pruß 2002). This is especially the case for WMFs greater than 20%.

• Differences in opacity data in atmospheric models can produce differences of approximately
≃ 200 K in the surface temperature at which the atmosphere is in equilibrium. This is due
to the outgoing longwave radiation, which is more dependent on the opacity data than the
Bond albedo. This difference in surface temperature causes a difference in total radius of up
to 7% for a planet of 1.5 M⊕ and WMF = 70%. The discrepancy in total radius decreases with
increasing mass and decreasing volatile content.
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• Using a constant step size when sampling the prior distribution in a MCMC scheme is not
efficient in exploring the parameter space. This causes an underestimation of the uncertain-
ties of the compositional parameters. Therefore, it is necessary to use an adaptive MCMC
when performing retrieval with interior models, especially for planets whose compositional
parameters can reach the maximum or minimum possible values. This is the case of rocky
Earth-sized planets and super-Earths, whose WMFs are close to zero, but are nonetheless
important to determine their surface pressure.

• The mass and radius retrieved by MCMC methods in interior modelling need to be compared
with the observed values to check that they are similar. If this is not the case, it means
that it is not possible to reproduce the observed density under the assumptions the model
considers. I defined the metric dobs−r et , which quantifies the difference between the observed
and retrieved masses and radii to determine the likelihood of the presence of a water-rich
envelope, as opposed to a H/He atmosphere or not atmosphere at all. For planets whose
density can only be explained with a H/He envelope, I combined our interior model core
and mantle with the H/He relations from Zeng et al. (2019) to estimate their volatile mass
fractions.

We take advantage of the complete sample of planets that we have analysed with the interior-
atmosphere model during its development. This sample is constituted by 46 exoplanets, including
both super-Earths and sub-Neptunes. We summarize the statistical properties of the composition
of these planets in the context of planet observation programs we are associated to:

• The radii of the planets in our sample span from 0.5 to 3.5 R⊕. This range covers the the Fulton
gap, the super-Earth and the sub-Neptune peaks, being representative of the population of
low-mass planets.

• We find two regimes in the WMF distribution. The super-Earth regime corresponds to planets
with WMF < 10%, whereas the sub-Neptune regime is constituted by planets with WMFs
> 20%, up to 70%. Furthermore, within the sub-Neptune sample, we distinguish two maxima
in the water mass fraction distribution: one at WMF ≃ 0.20 and another one at WMF ≃ 0.60.
The gap at WMF = 0.30 - 0.40 might indicate a transition between water-rich envelopes and
H/He atmospheres.

• We found that planets with M < 2.5 M⊕ do not present WMFs greater than 10%. I show
that this could be due to Jeans atmospheric escape preventing them from retaining massive
envelopes.

• The CMF distribution of our sample shows two populations: Earth-like planets with CMFs
= 0.2 - 0.4, and super-Mercuries with CMF > 0.80. When the core mass fraction is obtained
taking into account the Fe/Si mole ratio from the host stellar abundances, its distribution is
Gaussian, with a 1 σ confidence interval in agreement with previous studies (Plotnykov and
Valencia 2020).

The sample also presents a wide range of relative uncertainties in mass and radius, allowing us to
observe how the refinement of the precision in the observables can improve the determination of
the composition. We find that the increase in the precision of the radius for sub-Neptunes improves
the volatile mass fraction estimate, but has no effects on the core mass fraction, in agreement with
previous work by (Otegi et al. 2020). Moreover, considering the Fe/Si mole ratio as input data helps
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constrain better the core mass fraction for sub-Neptunes, but provides very similar estimates for the
water mass fraction compared to when we only take into account mass and radius data. Therefore,
the Fe/Si mole ratio does not break the degeneracy in composition for sub-Neptunes. In the case of
super-Earths, the uncertainty of the CMF is reduced when the radius precision is improved and the
Fe/Si mole ratio is included in the modelling.

Perspectives
The field of interior and atmosphere modelling faces the challenge of degeneracies in composition.
The first degeneracy consists of the fact that different combinations of core mass fraction and water
mass fraction can yield the same radius. It is widely adopted to use the host stellar abundances
to constrain the Fe/Si mole ratio to break this degeneracy (Dorn et al. 2015; Brugger et al. 2017;
Wang et al. 2022). Nonetheless, the Fe/Si derived from stellar abundances and that obtained from
rocky planet densities are not exactly a 1:1 relationship (Schulze et al. 2021; Adibekyan et al. 2021),
which could be due to different formation processes. For this reason, in this thesis we presented
two scenarios in most of our planet analyses: scenario 1, where the mass and radius are the data
for the retrieval framework; while in scenario 2, we consider the mass, radius and the Fe/Si mole
ratio derived from the stellar abundances. The presentation of both scenarios gives us a complete
picture of the possible core and water mass fractions.

This degeneracy could be broken by measuring the Love number. The rigidity of the solid material,
as well as tidal forces, influence the shape of the planet, which might differ significantly from a
perfect sphere. The deviation from a perfect spherical shape depends on the Love number, which
is a proxy of the interior’s density profile. The Love number has been measured only for hot
Jupiters with the radial velocity method (Csizmadia et al. 2019) and transit photometry (Barros et al.
2022).The on-going JWST, and the future PLATO mission will be able to provide more precise data
to infer the Love number of more exoplanets (Hellard et al. 2020; Nettelmann and Valencia 2021).
The planet’s interior density profile not only depends on the Love number, but also on whether
the refractories and volatiles in the interior are mixed or stratified in two separate layers. Although
modelling work has done progress in determining what evolution and planetary conditions facilitate
mixing of ice and rocks (Vazan et al. 2022), measuring the Love number will contribute to break
this second degeneracy in planetary interiors. In addition, the generation of magnetic fields by
liquid iron cores could also be used to constrain the size of the planetary core, which would add
more observational data to break the degeneracy between the core and the water layer. Current
radio telescopes are able to detect magnetic activity emission from hot Jupiters (Lynch et al. 2018;
Cendes et al. 2022), although irregular magnetic and cyclotron emission from smaller planets could
be detected with future ground facilities (Driscoll and Olson 2011).

The interior composition of the core and mantle has a connection with the composition of the
atmosphere via outgassing (Dorn et al. 2018; Spaargaren et al. 2020; Wang et al. 2022). Atmospheric
characterization of low-mass planets seems to be the most accessible way to constrain the iron-to-
silicate ratio and redox state, given the upcoming amount of data from JWST. Furthermore, these
data will also help break a third degeneracy we find in planetary interiors, between the mass and
the composition of the atmosphere. In other words, a secondary atmosphere (water, CO2) and a
H/He atmosphere can yield a similar atmospheric thickness with different atmospheric masses. If
the composition of the atmosphere is known, an interior-atmosphere model, such as the one we
developed in this thesis, could be used to constrain the surface pressure and temperature.

The atmospheric compositions of sub-Neptunes are proving to be a mixture of H/He, water
and other compounds via observations and models (Madhusudhan et al. 2020; Bézard et al. 2020;
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Guzmán-Mesa et al. 2022), while super-Earths can have more exotic atmospheric compositions,
such as mineral atmospheres (Keles et al. 2022). Therefore, the scope of future work will be to include
more gases in the atmospheric model, as well as the calculation of transmission spectra in addition
to the existing implementation of emission and reflection spectra. This will constitute a forward
model that could be used, together with Bayesian algorithms, to perform a simultaneous retrieval
of the spectrum and mass and radius data. This type of retrieval, together with spectroscopic
characterization data, would break the degeneracy between the composition of the envelope
and the surface pressure. Photochemistry models have shown that the surface conditions also
determine the abundances of specific atmospheric gases in sub-Neptunes that can be detected with
JWST (Yu et al. 2021; Tsai et al. 2021; Hu et al. 2021). These equilibrium chemistry networks can be
included in interior-atmospheric models to provide further constraints on the surface conditions of
low-mass planets.

JWST has several targets of interest to which this model could be applied once data is acquired.
These targets include the sub-Neptunes K2-18 b, for which more sensitive transmission spectra
will be obtained (Hu and Damiano 2021; Madhusudhan et al. 2021); and GJ1412 b, which will be
characterised by phase curves (Bean et al. 2021), in addition to its already existing HST transmission
spectrum (Kreidberg et al. 2014). Other possible cases to which it could be applied are super-Earths
55 Cancri e (Hu et al. 2021), and Gl 486 b (Mansfield et al. 2021), and the Earth-sized TRAPPIST-1
c (Kreidberg et al. 2021). These will be the first cases of a sample of low-mass exoplanets with
available atmospheric characterization data. A number of future missions will provide more of this
type of data. Whenever 3D effects are negligible, or at least poorly constrained due to the lack of in-
depth characterization of the atmosphere, one-dimensional interior-atmosphere models constitute
fast and accurate tools to identify planets that are the most promising for future atmospheric
observations. They can also help the interpretation of atmospheric observations at low resolution.
In addition, they provide unique information on their internal composition, which is particularly
valuable in helping us to better understand how these diverse, low-mass planets form. The model
presented in this thesis could be used as a starting point to develop more detailed models necessary
for upcoming missions, which include:

1. Ariel (Tinetti et al. 2018) will increase the number of planets with atmospheric characterization
data by carrying out a survey. It will also obtain the phase curves of a large sample of exoplanets
across a wide range of masses and radii, which will enable us to obtain atmospheric metallicity
and chemistry constraints, as well as albedo measurements, which are necessary to determine
the atmospheric energy balance (Charnay et al. 2022). The metallicity and C/O ratio have been
obtained for Jupiter-sized planets (Giacobbe et al. 2021), which are parameters that contain
information about the formation location and the dominant type of accretion (dust, pebble
or planetesimal) (Khorshid et al. 2021; Mollière et al. 2022). An atmosphere characterization
survey such as Ariel will provide data necessary to connect atmospheric compositions and
planet formation for low-mass planets, similarly to what it is being done with gaseous giants.

2. The detection and characterization of temperate Earth-sized planets are a priority for PLATO
(Rauer et al. 2014). PLATO will be able to detect temperate Earth-sized planets around solar-
like stars and provide precise radius measurements to characterise their density, together with
radial velocity follow-up with ESPRESSO, HARPS and HiRES (Udry et al. 2014). PLATO will be
the first survey of habitable planets, which will supply a sample of targets for atmospheric
characterization to search for biosignatures.

3. The ground-based Extremely Large Telescopes (ELTs) will acquire atmospheric characteriza-

126



8. Conclusion

tion data to search for biosignatures. Biosignatures are combinations of gaseous species at
given abundances that are not expected in atmospheres in chemical equilibrium, produced
by the action of life. The processes that could drive an atmosphere in a terrestrial planet out
of chemical equilibrium could also be geological. It is therefore essential to model the dis-
equilibrium chemistry produced by abiotic geological processes (i.e volcanism, weathering),
to avoid biosignature false positives (Truong and Lunine 2021). This search for biosignatures
will be done with transmission spectroscopy, high-resolution spectroscopy and reflected-light
imaging in the next decade (Snellen et al. 2013; Lopez-Morales et al. 2019).

4. In the next 20 to 30 years, the number of Earth-sized planets characterized by atmospheric
data could be increased by future space missions Luvoir (The LUVOIR Team 2019), HabEx
(Gaudi et al. 2018) and LIFE (Konrad et al. 2021).

Simultaneously, an in-situ probe exploration of the Solar System ice giants is a priority in the next
30 to 40 years. The interiors and atmospheres of Uranus and Neptune are still poorly understood,
as we only have data acquired remotely (Mousis et al. 2018; Fletcher et al. 2020). Such a mission is
essential to break the degeneracies we have discussed above for sub-Neptunes, because our interior
and atmosphere models for this class of planets are based on our knowledge of the Solar System ice
giants, similar to Earth and Venus being the references for super-Earth models.
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A. First-author contributions

A.1. Characterisation of the hydrospheres of TRAPPIST-1
planets (Acuña et al. 2021)

L. Acuña, M. Deleuil, O. Mousis, E. Marcq, M. Levesque, and A. Aguichine

The following is the first first-author publication as a result of the work presented in this thesis.
It describes the implementation of different water phases in two separate versions of the interior
model, one which includes the supercritical water layer (see Sect. 2.2), and another one that
includes ice phases for cold planets. Furthermore, the interior-atmosphere algorithm is presented
(see Chapter 3) to couple our interior model to the atmospheric model developed by Marcq et al.
(2017) and Pluriel et al. (2019). Additionally, the non-adaptive MCMC (see Sect. 5.1) is also explained
and used to infer the compositional parameters of the planets in the TRAPPIST-1 system. I present
the final results, and discuss on the composition scenarios and possible formation pathways of the
TRAPPIST-1 system in Sect. 6.1.
This work was also presented in the PLATO mission conference 2020 as a contributed talk, in
December 2020 (virtual).
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ABSTRACT

Context. Planetary mass and radius data suggest that low-mass exoplanets show a wide variety of densities. This includes sub-
Neptunes, whose low densities can be explained with the presence of a volatile-rich layer. Water is one of the most abundant volatiles,
which can be in the form of different phases depending on the planetary surface conditions. To constrain their composition and interior
structure, models must be developed that accurately calculate the properties of water at its different phases.
Aims. We present an interior structure model that includes a multiphase water layer with steam, supercritical, and condensed phases.
We derive the constraints for planetary compositional parameters and their uncertainties, focusing on the multi-planetary system
TRAPPIST-1, which presents both warm and temperate planets.
Methods. We use a 1D steam atmosphere in radiative-convective equilibrium with an interior whose water layer is in supercritical
phase self-consistently. For temperate surface conditions, we implement liquid and ice Ih to ice VII phases in the hydrosphere. We
adopt a Markov chain Monte Carlo inversion scheme to derive the probability distributions of core and water compositional parame-
ters.
Results. We refine the composition of all planets and derive atmospheric parameters for planets ‘b’ and ‘c’. The latter would be in a
post-runaway greenhouse state and could be extended enough to be probed by space missions such as JWST. Planets ‘d’ to ‘h’ present
condensed ice phases, with maximum water mass fractions below 20%.
Conclusions. The derived amounts of water for TRAPPIST-1 planets show a general increase with semi-major axis, with the exception
of planet d. This deviation from the trend could be due to formation mechanisms, such as migration and an enrichment of water in the
region where planet d formed, or an extended CO2-rich atmosphere.

Key words. planets and satellites: interiors – planets and satellites: composition – planets and satellites: atmospheres –
planets and satellites: individual: TRAPPIST-1 – methods: statistical – methods: numerical

1. Introduction

Ongoing space missions such as CHEOPS (Benz 2017) and
TESS (Ricker et al. 2015), and their follow-up with ground-based
radial velocity telescopes, are confirming the existence of low-
mass exoplanets with a wide range of densities. These densities
range from the values typically inferred for the Earth or Mercury
to those measured in Uranus and Neptune. The exoplanets in the
former class are mainly composed of a Fe-rich core and a silicate
mantle, while the latter class has a layer that is rich in volatiles.
Water is the most abundant and least dense volatile after H and
He (Forget & Leconte 2014), which makes it a likely species to
constitute the volatile reservoir in these planets. Several stud-
ies have investigated the interior structure and composition of
water-rich planets (Sotin et al. 2007; Seager et al. 2007; Dorn
et al. 2015; Zeng et al. 2019), but focused mainly on its con-
densed phases. Nonetheless, many sub-Neptunes are close to
their host star and receive enough irradiation to trigger a runaway
greenhouse state in which water is present as steam. In some
cases, the high pressure and temperature conditions can render
the hydrosphere supercritical and plasma, or even lead to superi-
onic phases (Mazevet et al. 2019; French et al. 2016). Therefore,
it is crucial to include the modelling of all possible phases of
water in order to provide an accurate description of its pres-
ence on the planetary surface. Moreover, the surface conditions
are determined by the greenhouse effect caused by atmospheric
gases, making the modelling of radiative-convective equilibrium

in atmospheres a key parameter to determine the phase in which
water could be present on the surface. Most interior structure
models represent the planetary atmosphere as a gas layer with
a simplified isothermal temperature profile (Dorn et al. 2018,
2017b), which is very different from the temperature profile in
the convective deep layers of thick atmospheres (Marcq 2012).

Multi-planetary systems are unique environments that
present both planets that can hold condensed phases and highly
irradiated planets with steam atmospheres. In this study, we
develop a planet interior model suitable for the different con-
ditions at which water can be found in low-mass planets. Our
implementation includes a supercritical water layer, introduced
in Mousis et al. (2020), coupled with a 1D radiative-convective
atmosphere model (Marcq 2012; Marcq et al. 2017; Pluriel et al.
2019) to calculate the total radius of the highly irradiated planets
with water self-consistently. Furthermore, for temperate planets,
we have updated the interior model presented in Brugger et al.
(2016, 2017) to include ice phases Ih, II, III, V, and VI. We intro-
duce these models in a Markov chain Monte Carlo (MCMC)
Bayesian analysis scheme adapted from Dorn et al. (2015). This
allows us to derive the water mass fraction (WMF) and core mass
fraction (CMF) that reproduce the observed radius, mass, and
stellar composition measurements.

We use this model to explore the possible water content of
the TRAPPIST-1 system, an ultra-cool M dwarf that hosts seven
low-mass planets in close-in orbits. Three of these planets are
located in the habitable zone (Grimm et al. 2018), meaning that
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they can hold liquid water or ice Ih on their surfaces. Although
all planets in TRAPPIST-1 system have masses and radii that
are characteristic of rocky planets, their differences in density
indicate that each planet has a different volatile content. This
makes this planetary system ideal for testing planet interior,
atmospheric structure, and formation scenarios.

In Sect. 2 we describe the complete interior structure model,
including the new updates for the supercritical and ice phases,
the coupling between the interior and the atmosphere for steam
and supercritical planets, and the MCMC Bayesian algorithm.
The parameters for the TRAPPIST-1 planets used in this study
are summarised in Sect. 3, including mass, radius, and Fe/Si
molar ratio. The results of our analysis of the hydrospheres of
TRAPPIST-1 planets are described in Sect. 4. We compare our
results with those of previous works and discuss the implications
of our water estimates for planet formation in Sect. 5. We finally
provide conclusions in Sect. 6.

2. Planetary structure model

For consistency, we recall the main principles of the interior
structure model. The basis of our model is explained in Brugger
et al. (2016, 2017). The 1D interior structure model takes as input
the mass and the composition of the planet, which are parame-
terised by the CMF and WMF. The structure of the planet is
stratified in three layers: a core, a mantle, and a hydrosphere.
The pressure, temperature, gravity acceleration, and density are
computed at each point of the 1D spatial grid along the radius
of the planet. The pressure, P(r), is obtained by integrating the
hydrostatic equilibrium (Eq. (1)); the gravitational acceleration,
g(r), by solving Gauss’s theorem (Eq. (2)); the temperature, T (r),
with the adiabatic gradient (Eq. (3)); and the density, ρ(r), with
the equation of state (EOS). In Eq. (2), m is the mass at radius r,
G is the gravitational constant, and γ and φ are the Gruneisen and
the seismic parameters, respectively. Their formal macroscopic
definitions are shown in Eq. (4), where E is the internal energy
and V is the volume. The Gruneisen parameter is a thermody-
namic parameter that describes the dependence of the vibrational
properties of a crystal with the size of its lattice. It relates the
temperature in a crystalline structure to the density, which is cal-
culated by the EOS. The seismic parameter defines how seismic
waves propagate inside a material. It is related to the slope of
the EOS at constant temperature (Brugger et al. 2017; Sotin et al.
2007).

dP
dr

= −ρg, (1)

dg
dr

= 4πGρ − 2Gm
r3 , (2)

dT
dr

= −gγT
φ
, (3)



φ =
dP
dρ

γ = V
(

dP
dE

)

V
.

(4)

The boundary conditions are the temperature and pressure at
the surface, and the gravitational acceleration at the centre of the
planet. The value of the latter is zero. The total mass of the planet
is calculated with Eq. (5), which is derived from the conservation
of mass (Brugger et al. 2017; Sotin et al. 2007). Once the total

input mass of the planet is reached and the boundary conditions
are fulfilled, the model has converged.
dm
dr

= 4πr2ρ. (5)

Depending on the surface conditions, the hydrosphere can
be present in supercritical, liquid, or ice states. For each of these
phases of water, we use a different EOS and Gruneisen parameter
to compute their P-T profiles and density accurately. In Sect. 2.1
we describe the updates to the supercritical water layer with
respect to the model depicted in Mousis et al. (2020), while in
Sect. 2.2 we present the implementation of the hydrosphere in
ice phases. Finally, the coupling between the atmosphere and
the interior model with planets whose hydrosphere is in steam
or supercritical phases is explained in Sect. 2.3, followed by the
description of the MCMC algorithm in Sect. 2.4.

2.1. Supercritical water

If the planet is close enough to its host star, the upper layer
of the hydrosphere corresponds to a hot steam atmosphere,
whose temperature at the base is determined by the radiative–
convective balance calculated by the atmosphere model (Marcq
2012; Marcq et al. 2017). When the pressure and temperature
at the surface, which is defined as the base of the hydrosphere
layer, are above the critical point of water, we include a super-
critical water layer extending from the base of the hydrosphere
to a height corresponding to the phase change to steam (Mousis
et al. 2020). We updated the EOS for this layer to the EOS intro-
duced by Mazevet et al. (2019), which is a fit to the experimental
data provided by the International Association for the Proper-
ties of Water and Steam (IAPWS; Wagner & Pruß 2002) for the
supercritical regime, and quantum molecular dynamics (QMD)
simulations data for plasma and superionic water (French et al.
2009). The IAPWS experimental data span a temperature range
of 251.2 to 1273 K and of 611.7 to 109 Pa in pressure, while
their EOS can be extrapolated up to 5000 K in temperature and
1011 Pa in pressure (Wagner & Pruß 2002). The validity range
of the EOS presented in Mazevet et al. (2019) includes that of
the IAPWS plus the region in which the QMD simulations are
applicable, which corresponds to a temperature from 1000 K to
105 K and densities in the 1–102 g cm−3 range. These densities
are reached at high pressures, that is, in the 109–1012 Pa range.
Following Eq. (3), the adiabatic gradient of the temperature is
specified by the Gruneisen and the seismic parameters. These
are dependent on the derivatives of the pressure with respect to
the density and the internal energy (Eq. (4)). We make use of the
specific internal energy and density provided by Mazevet et al.
(2019) to calculate them.

2.2. Ice phases

We extended the hydrosphere in Brugger et al. (2016, 2017)
with liquid and high-pressure ice VII by adding five more
condensed phases: ice Ih, II, III, V, and VI. An EOS for ice Ih
was developed by Feistel & Wagner (2006) with minimisation
of the Gibbs potential function from the fit of experimental data.
It covers the whole pressure and temperature range in which
water forms ice Ih.

Fei et al. (1993) proposed a formalism to derive the EOSs of
ices II, III, and V. These EOSs take the form V = V(P,T ), which
can be found by integrating the following differential equation
(Tchijov et al. 2004):
dV
V

= αdT − βdP, (6)
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Table 1. EOS and reference thermal parameters for ices Ih, II, III, V, and VI.

Phase ρ0 [kg m−3] T0 [K] KT0 [GPa] K′T0
Cp(T0) [J kg−1 K−1] α0 [10−6 K−1] References

Ih 921.0 248.15 9.50 5.3 1913.00 147 1, 8
II 1169.8 237.65 14.39 6.0 2200.00 350 1, 2, 7
III 1139.0 237.65 8.50 5.7 2485.55 405 3, 4, 5, 7
V 1235.0 237.65 13.30 5.2 2496.63 233 1, 4, 5, 7
VI 1270.0 300.00 14.05 4.0 2590.00 146 4, 6, 7

Notes. This includes the reference values for the density ρ0, the temperature T0, the bulk modulus KT0 and its derivative K′T0
, the heat capacity

Cp(T0), and the thermal expansion coefficient α0.
References. (1) Gagnon et al. (1990); (2) Báez & Clancy (1995); (3) Tulk et al. (1997); (4) Tchijov et al. (2004); (5) Shaw (1986); (6) Bezacier
et al. (2014); (7) Choukroun & Grasset (2010); (8) Feistel & Wagner (2006).

where α is the thermal expansion coefficient and β the isothermal
compressibility coefficient. If the relationship between the spe-
cific volume, V , and the pressure, P, at a constant temperature
T = T0 is determined, Eq. (6) can be integrated as:

V(P,T ) = V(P,T0) exp
(∫ T

T0

α(P,T ′)dT ′
)
. (7)

Fei et al. (1993) proposed the following expression for the
thermal expansion coefficient α:

α(P,T ) = α(P0,T )

(
1 +

K′T0

KT0

P
)−η

(
1 +

K′T0

KT0

P0

)−η = −1
ρ

dρ(T )
dT

(
1 +

K′T0

KT0

P
)−η

(
1 +

K′T0

KT0

P0

)−η ,

(8)

where η is an adjustable parameter estimated from the fitting of
experimental data. Its value is 1.0 for ice II and ice III (Leon et al.
2002) and 7.86 for ice V (Shaw 1986). ρ is the density, α(P0,T )
is the coefficient of thermal expansion at a reference pressure P0,
KT0 is the isothermal bulk modulus at the reference temperature
T0, and K′T0

is the first derivative of the isothermal bulk modulus
at the reference temperature. Hence, by substituting Eq. (8) in
Eq. (7) and integrating, we obtain the following EOS for high-
pressure ice:

V(P,T ) = V(P,T0) exp


ln

(
ρ(T0)
ρ(T )

)
(
1 +

K′T0

KT0

P
)−η

(
1 +

K′T0

KT0

P0

)−η


. (9)

The final expression (Eq. (9)) requires knowledge of the variation
of the specific volume, V(P,T0), with pressure at the reference
temperature T0. Moreover, the variation of the density with
temperature, ρ(T ), and the bulk modulus with its derivative at
the reference temperature, KT0 and K′T0

, must also be provided.
In Table 1 we specify the data and references to obtain these
parameters for each ice phase.

In the case of ice VI, we adopt the second-order Birch-
Murnaghan (BM2) formulation, which is

P =
3
2

KT0



(
ρ

ρ0

)7
3 −

(
ρ

ρ0

)5
3


, (10)

where ρ0 is the reference density for ice VI. We also introduce
a thermal correction to the density because the pressure also
depends on the temperature:

ρ(T ) = ρ0 exp (α0 (T − T0)) , (11)

where α0 is the reference coefficient of thermal expansion. Inter-
faces between liquid and ice layers are established by phase
transition functions from Dunaeva et al. (2010).

2.3. Interior-atmosphere coupling

We use a 1D atmosphere model designed to compute radiative
transfer and pressure–temperature (P, T ) profiles for water and
CO2 atmospheres (Marcq 2012; Marcq et al. 2017). The forma-
tion of water clouds is considered in the computation of the
albedo. The atmosphere is in radiative equilibrium, and presents
a composition of 99% water and 1% CO2. The density of steam
is obtained using a non-ideal EOS (Haar et al. 1984).

If the surface pressure is below 300 bar, the atmosphere and
the interior are coupled at the atmosphere–mantle boundary and
water does not reach the supercritical regime. However, if the
surface pressure is greater than 300 bar, the atmosphere and the
interior are coupled at this pressure level and a layer of water in
supercritical phase forms between the atmosphere and the man-
tle. The pressure level at 300 bar is close enough to the critical
point of water at 220 bar to avoid the atmosphere model to take
over pressures and temperatures where the temperature profile is
adiabatic.

The pressure at the top of the atmosphere is set to 20 mbar,
which corresponds to the observable transiting radius (Mousis
et al. 2020; Grimm et al. 2018). We denote the radius and mass
from the centre of the planet to this pressure level the total radius
and mass, Rtotal and Mtotal, respectively. We also define the radius
and the mass that comprise the core, mantle, and supercritical
layers as the bulk radius and mass, Rbulk and Mbulk, respectively.
The atmosphere model provides the outgoing longwave radiation
(OLR), albedo, thickness, and mass of the atmosphere as a func-
tion of the bulk mass and radius, and the surface temperature. If
the atmosphere of the planet is in radiative equilibrium, the OLR
is equal to the radiation the planet absorbs from its host star,
Fabs. The OLR depends on the effective temperature because
OLR = σT 4

eff
, where σ corresponds to the Stefan-Boltzmann

constant. To calculate the absorbed radiation Fabs, we first
compute the equilibrium temperature, which is

Teq = (1 − AB)0.25
(

R?

2ad

)0.5

T?, (12)
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Fig. 1. Structural diagram of the coupling between the interior structure
model and the atmosphere model. Tbase is the temperature at the bottom
of the steam atmosphere in radiative-convective equilibrium. z and Matm
denote the atmospheric thickness and mass, respectively. Rbulk and Mbulk
correspond to the planet bulk radius and mass, respectively. Rguess refers
to the initial guess of the bulk radius, while Rinterior is the output bulk
radius of the interior structure model in each iteration.

where AB is the planetary albedo, R? and T? are the radius and
effective temperature of the host star, respectively, and ad is the
semi-major axis of the planet. The absorbed radiation is then
calculated as

Fabs = σ T 4
eq. (13)

Figure 1 shows the algorithm we implemented to couple
the planetary interior and the atmosphere. The interior struc-
ture model calculates the radius from the centre of the planet
to the base of the steam atmosphere. For a fixed set of bulk mass
and radius, the OLR depends on the surface temperature. Con-
sequently, the surface temperature at which the OLR is equal to
the absorbed radiation corresponds to the surface temperature
that yields radiative equilibrium in the atmosphere. This is esti-
mated with a root-finding method. As the bulk radius is an output
of the interior model (Rinterior) and an input of the atmosphere
model, we first need to calculate the surface temperature for a
certain mass and composition with an initial guess bulk radius.
This surface temperature is then the input for the interior model,
which provides the bulk radius. With this bulk radius, we can
generate a new value of the surface temperature. This scheme is
repeated until the bulk radius converges to a constant value, to
which we add the thickness of the atmosphere, z, to get the total
radius of the planet Rtotal. The total mass Mtotal is obtained as the
sum of the bulk mass Mbulk plus the atmospheric mass Matm. The
tolerance used to determine if the bulk radius has achieved con-
vergence is 2% of the bulk radius in the previous iteration. This
is approximately 0.02 R⊕ for an Earth-sized planet.

2.4. MCMC Bayesian analysis

We adapted the MCMC Bayesian analysis algorithm described in
Dorn et al. (2015) to our coupled interior and atmosphere model.
The input model parameters are the bulk planetary mass Mbulk,
the CMF, and the WMF. Therefore, m = {Mbulk,CMF,WMF}
following the notation in Dorn et al. (2015). Depending on the
planetary system and their available data, we can have obser-
vational measurements of the total planetary mass and radius
and the stellar composition, or only the total planetary mass
and radius. The available data in the former case are denoted
as d = {Mobs,Robs,Fe/Siobs}, while the data in the latter case
are represented as d = {Mobs,Robs}. The uncertainties on the
measurements are σ(Mobs), σ(Robs), and σ(Fe/Siobs).

The CMF and WMF prior distributions are uniform distri-
butions between 0 and a maximum limit. This maximum limit is
75% for the CMF, which is derived from the maximum estimated
Fe/Si ratio of the proto-Sun (Lodders et al. 2009). With this limit
on the CMF, we are assuming that the exoplanets have not been
exposed to events during or after their formation that could have
stripped away all of their mantle, such as mantle evaporation or
giant impacts. In addition, the maximum WMF is set to 80%,
which is the average water proportion found in comets in the
Solar System (McKay et al. 2019). The prior distribution for the
mass is a Gaussian distribution whose mean and standard devi-
ations correspond to the central value and uncertainties of the
observations.

The MCMC scheme first starts by randomly drawing a
value for each of the model parameters from its respec-
tive prior distributions. This set of values is denoted m1 ={
Mbulk,1,CMF1,WMF1

}
. The index i = 1 corresponds to the first

proposed set of input values within the first chain, n = 1. The
model calculates the total mass and radius and the theoretical
Fe/Si mole ratio, which are the set of output parameters g(m1) =
{R1,M1,Fe/Si1}. The likelihood of a set of model parameters is
then calculated via the following relationship (Dorn et al. 2015):

L(mi | d) = C exp
(
−1

2

[(
(Ri − Robs)
σ(Robs)

)2

+

(
(Mi − Mobs)
σ(Mobs)

)2

+

(
(Fe/Sii − Fe/Siobs)

σ(Fe/Siobs)

)2])
, (14)
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where the normalisation constant of the likelihood function C is
defined as:

C =
1

(2π)3/2 [
σ2(Mobs) · σ2(Robs) · σ2(Fe/Siobs)

]1/2 . (15)

When the Fe/Si mole ratio is not available as data, the square
residual term of the Fe/Si mole ratio is removed from Eq. (14),
as is its squared uncertainty in Eq. (15).

Subsequently we draw a new set of input parameters, m2 ={
Mbulk,2,CMF2,WMF2

}
, from the prior distributions within the

same chain, n. We assure that the absolute difference between
the values for i = 1 and i = 2 is lower than a fixed step, which
is the maximum size of the perturbation. This guarantees that
the new state m2 is uniformly bounded and centred around the
old state, m1. The maximum perturbation size is selected so that
the acceptance rate of the MCMC, which is defined as the ratio
between the number of models that are accepted and the num-
ber of proposed models, is above 20%. After m2 is chosen, the
forward model calculates its corresponding output parameters
and obtains their likelihood L(m2 | d), as shown in Eq. (14).
The acceptance probability is estimated with the log-likelihoods
l(m | d) = log(L(m | d)) as:

Paccept = min
{
1, e(l(m2 |d)−l(m1 |d))

}
. (16)

If Paccept is greater than a number drawn from a uniform dis-
tribution between 0 and 1, m2 is accepted and the chain moves to
the state characterised by m2, starting the next chain n + 1. Oth-
erwise, the chain remains in the state of m1 and a different set
of model parameters is proposed as m3. To ensure that the pos-
terior distributions converge and that the whole parameter space
is explored, we run 104 chains. In other words, with acceptance
rates between 0.2 and 0.6, the MCMC proposes between 1.6 and
5 × 104 sets of model inputs.

3. System parameters of TRAPPIST-1

Agol et al. (2021) performed an analysis of transit timing varia-
tions (TTVs) that includes all transit data from Spitzer since the
discovery of the system. We adopt these data for the mass, radius,
and semi-major axis in our interior structure analysis (Table 2).

Data are not available regarding the chemical composition of
TRAPPIST-1. However, the Fe/Si abundance ratio can be esti-
mated assuming that TRAPPIST-1 presents a similar chemical
composition to that of other stars of the same metallicity, age,
and stellar population. As proposed by Unterborn et al. (2018),
we select a sample of stars from the Hypatia Catalogue (Hinkel
et al. 2014, 2016, 2017). We choose the set of stars by con-
straining the C/O mole ratio to be less than 0.8, and the stellar
metallicity between −0.04 and 0.12, as this is the metallicity
range calculated for TRAPPIST-1 by Gillon et al. (2017). We
discard thick disc stars because TRAPPIST-1 is likely a thin disc
star. Our best-fit Gaussian to the distribution of the Fe/Si mole
ratio shows a mean of 0.76 and a standard deviation of 0.12. As
this Fe/Si value is an estimate based on the chemical composition
of a sample of stars that belong to the same stellar population as
TRAPPIST-1, we present two scenarios for each planet. In sce-
nario 1, the only available data are the planetary mass and radius,
while scenario 2 includes the estimated stellar Fe/Si mole ratio
to constrain the bulk composition.

For temperate planets that cannot have a steam atmosphere,
we set the surface temperature in our interior model to their
equilibrium temperatures assuming an albedo zero (Table 2).

Table 2. Masses, radii, and semi-major axis for all planets in
TRAPPIST-1 (Agol et al. 2021).

Planet M [M⊕] R [R⊕] ad [10−2 AU] Teq[K]

b 1.374± 0.069 1.116+0.014
−0.012 1.154 398

c 1.308± 0.056 1.097+0.014
−0.012 1.580 340

d 0.388± 0.012 0.788+0.011
−0.010 2.227 286

e 0.692± 0.022 0.920+0.013
−0.012 2.925 250

f 1.039± 0.031 1.045+0.013
−0.012 3.849 218

g 1.321± 0.038 1.129+0.015
−0.013 4.683 197

h 0.326± 0.020 0.775± 0.014 6.189 172

Notes. Equilibrium temperatures are calculated assuming a null albedo,
with the stellar effective temperature, stellar radius, and semi-major axis
provided by Agol et al. (2021).

Although surface temperatures for thin atmospheres are lower
than that obtained with this assumption, the dependence of the
bulk radius on surface temperature for planets with condensed
water is low. For example, if we assume a pure-water planet of 1
M⊕ with a surface pressure of 1 bar, the increase in radius due to
a change of surface temperature from 100 to 360 K is 0.002 R⊕,
which is less than 0.2% of the total radius, which is ten times less
than our convergence criterion. Additionally, the atmospheres
of TRAPPIST-1 planets in the habitable zone and farther are
significantly thinner than those of the highly irradiated planets.
Lincowski et al. (2018) estimated thicknesses of approximately
80 km for temperate planets in TRAPPIST-1, which is negligi-
ble compared to their total radius. Therefore, we only calculate
the atmospheric parameters (OLR, surface temperature, albedo,
and thickness of the atmosphere) for planets that present their
hydrospheres in steam phase.

4. Characterisation of hydrospheres

4.1. CMF and WMF posterior distributions

Tables 3 and 4 show the retrieved parameters, including the total
planetary mass and radius, and the Fe/Si mole ratio. In both sce-
narios, we retrieve the mass and radius within the 1σ–confidence
interval of the measurements for all planets. In scenario 1, where
only the mass and radius data are considered, we retrieve Fe/Si
mole ratios without any assumptions on the chemical com-
position of the host star. Although the uncertainties on these
estimates are more than 50% in some cases, we can estimate a
common Fe/Si mole ratio for the planetary system. This common
Fe/Si range is determined by the overlap of the 1σ confidence
intervals of all planets, which corresponds to Fe/Si = 0.45–
0.97. This interval is compatible with the Fe/Si mole ratio of
0.76± 0.12 proposed by Unterborn et al. (2018). This overlap
can also be seen in Fig. 2, which presents the 1σ–confidence
regions derived from the 2D marginalised posterior distributions
of the CMF and WMF. The minimum value of the common
CMF is determined by the lower limit of the confidence region
of planet g, which is approximately 0.23, whereas the common
maximum CMF value corresponds to the upper limit of planets
b and c, which is 0.4. This is partially in agreement with the
CMF obtained in scenario 2, where we assume the Fe/Si mole
ratio proposed by Unterborn et al. (2018), which is found to be
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Table 3. Output parameters retrieved by the MCMC method for all TRAPPIST-1 planets.

Planet Mret [M⊕] Rret [R⊕] CMF WMF Fe/Siret

b 1.375± 0.041 1.116± 0.013 0.261± 0.146 (3.1+5.0
−3.1) × 10−5 1.00± 0.56

c 1.300± 0.036 1.103± 0.015 0.239± 0.084 (0.0+4.4
−0.0) × 10−6 0.71± 0.26

d 0.388± 0.007 0.790± 0.010 0.409± 0.167 0.084± 0.071 1.22+1.30
−1.22

e 0.699± 0.013 0.922± 0.015 0.447± 0.123 0.094± 0.067 1.75± 1.17
f 1.043± 0.019 1.047± 0.015 0.409± 0.140 0.105± 0.073 1.44± 1.14
g 1.327± 0.024 1.130± 0.016 0.399± 0.144 0.119± 0.080 1.33± 1.29
h 0.327± 0.012 0.758± 0.013 0.341± 0.192 0.081+0.089

−0.081 0.13+1.80
−0.13

Notes. Columns are: total mass (Mret) and radius (Rret), CMF, WMF, and Fe/Si molar ratio. In this case the mass and radius are considered as input
data (scenario 1).

Table 4. Output parameters retrieved by the MCMC method for all TRAPPIST-1 planets.

Planet Mret [M⊕] Rret [R⊕] CMF WMF Fe/Siret

b 1.359± 0.043 1.124± 0.016 0.259± 0.032 (0.0+3.4
−0.0) × 10−6 0.79± 0.10

c 1.299± 0.034 1.103± 0.014 0.257± 0.031 (0.0+2.7
−0.0) × 10−6 0.79± 0.11

d 0.387± 0.007 0.792± 0.010 0.241± 0.032 0.036± 0.028 0.76± 0.12
e 0.695± 0.012 0.926± 0.012 0.249± 0.031 0.024+0.027

−0.024 0.78± 0.12
f 1.041± 0.019 1.048± 0.013 0.240± 0.031 0.037± 0.026 0.76± 0.12
g 1.331± 0.023 1.131± 0.015 0.235± 0.031 0.047± 0.028 0.75± 0.12
h 0.326± 0.011 0.758± 0.013 0.232± 0.032 0.055± 0.037 0.75± 0.12

Notes. Columns are: total mass (Mret) and radius (Rret), CMF, WMF, and Fe/Si molar ratio. In this case, the Fe/Si mole ratio estimated by following
Unterborn et al. (2018) is also included as data (scenario 2).

between 0.2 and 0.3 (Table 4). Thus, the CMF of the TRAPPIST-
1 planets could be compatible with an Earth-like CMF (CMF⊕ =
0.32).

In scenario 1, the retrieved WMFs for all planets in the sys-
tem are below 20% within their uncertainties. This maximum
WMF limit reduces to 10% for scenario 2. This indicates that the
TRAPPIST-1 system is poor in water and other volatiles, espe-
cially the inner planets b and c. Both planets are compatible with
a dry composition in both scenarios, although the presence of an
atmosphere cannot be ruled out given the possible CMF range
estimated in scenario 1.

4.2. Water phases

Figure 3 shows the OLR calculated by the atmosphere model and
the absorbed radiation (Eqs. (12) and (13)) for planets b, c, and d.
For temperatures lower than ∼ Tsurf = 2000 K, the OLR has lit-
tle dependency on the surface temperature. This is caused by the
nearly constant temperature (between 250 and 300 K) of the radi-
ating layers in the thermal IR range (Goldblatt et al. 2013) and it
is related to the runaway greenhouse effect (Ingersoll 1969). We
obtain a constant OLR or an OLR limit (Nakajima et al. 1992)
of 274.3, 273.7, and 254.0 W m−2 for planets b, c, and d, respec-
tively. These are close to the OLR limit obtained by Katyal et al.
(2019) of 279.6 W m−2 for an Earth-like planet. The small dif-
ference is due to their different surface gravities. As explained
in Sect. 2.3, if the atmosphere model can find a surface tempera-
ture at which the OLR and the absorbed radiation are equal, their
atmospheres are in global radiative balance. This is the case for
planets b and c, whose surface temperatures are approximately
2450 and 2250 K, respectively. These are above the temperatures

where the blanketing effect is effective, named Tε in Marcq et al.
(2017), implying that the atmospheres of planets b and c are in a
post-runaway state. However, planet d is not in global radiative
balance as its absorbed radiation never exceeds its OLR. This
means that planet d would be cooling down, and an internal flux
of approximately 33 W m−2 would be required to supply the extra
heat to balance its radiative budget. TRAPPIST-1 inner planets
are likely to present an internal heat source due to tidal heat-
ing (Barr et al. 2018; Dobos et al. 2019; Turbet et al. 2018). The
tidal heat flux estimated for planet d is Ftidal = 0.16 W m−2 (Barr
et al. 2018), which is one order of magnitude lower than needed
for radiative–convective balance of a steam atmosphere. Due to
the blanketing effect of radiation over the surface of planet d, the
OLR limit is larger than the absorbed radiation and hence the
planet can cool enough to present its hydrosphere in condensed
phases.

Figure 4 shows the (P,T ) profiles and the different phases
of water we can find in the hydrospheres of the TRAPPIST-1
planets. The maximum WMF of planets b and c are 8.1 × 10−5

and 4.4 × 10−6, which correspond to a surface pressure of 128.9
and 4.85 bar, respectively.

The thermal structure of their steam atmospheres are domi-
nated by a lower, unsaturated troposphere where water conden-
sation does not occur. Then the atmosphere consists of a middle,
saturated troposphere where cloud formation would be possible,
extending up to 10 mbar, and finally an isothermal mesosphere
above. As we consider a clear transit radius of 20 mbar (Grimm
et al. 2018; Mousis et al. 2020), the presence of clouds above
this pressure level would flatten the water features in the plan-
etary spectrum (Turbet et al. 2019; Katyal et al. 2020). On the
other hand, planets d and e could present water in liquid phase,
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Fig. 2. Top panel: 1σ-confidence regions derived from the 2D posterior
distributions for the first scenario, where only the masses and radii are
available as data. Bottom panel: 1σ-confidence regions derived from
the 2D posterior distributions for the second scenario, where the Fe/Si
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which could be partially or completely covered in ice Ih. While
the hydrosphere of planet h is not massive enough to attain the
high pressures required for ice VII at its base, planets d to g can
reach pressures up to a 100 GPa.
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(see text). Thicker lines indicate the profile for the minimum WMF esti-
mated for each planet in scenario 1, while thinner lines mark the profile
for the maximum WMF under the same scenario. The minimum WMF
of planets b, c, and h is zero.

4.3. Retrieval of atmospheric parameters

Figure 5 shows the output atmospheric parameters (surface tem-
perature, atmospheric thickness, albedo, and atmospheric mass)
of TRAPPIST-1 b and c for a water-dominated atmosphere in
scenario 1. The total thickness of an atmosphere is related to
its scale height, which is defined as H = RT/µg, where R =
8.31 J K−1 mol is the gas constant, T is the mean atmospheric
temperature, µ the mean molecular mass, and g the surface
gravity acceleration. For planets b and c, the mean atmospheric
temperatures are 940.4 and 499.4 K, and their surface gravities
are 10.8 and 10.7 m s−2, respectively. The mean molecular mass
for a 99% water and 1% CO2 atmosphere is 18.3 g mol−1. The
mean temperature increases with surface temperature, while the
mean molecular mass is determined by the composition of the
atmosphere.

For the same composition and surface gravity, the scale
height and therefore the thickness of the atmosphere are directly
correlated to the surface temperature. As shown in Fig. 5, the
atmospheric thickness, zatm, increases with the surface temper-
ature Tsurf . This is known as the runaway greenhouse radius
inflation effect (Goldblatt 2015; Turbet et al. 2019), where a
highly irradiated atmosphere is more extended than a colder one
despite having similar composition. For planet b, its atmosphere
can extend up to 450 km, while planet c presents a maximum
extension of 300 km. The minimum limit for the thicknesses
is zero, which corresponds to the case of a dry composition.
Ortenzi et al. (2020) estimated that for a planet of 1–1.5 M⊕ the
maximum atmospheric thickness due to the outgassing of an oxi-
dised mantle is 200 km, which is compatible with the ranges
we obtain for the atmospheric thicknesses. Scenario 2 shows
the same trends for the atmospheric parameters but with lower
atmospheric mass and surface pressure. With their WMF poste-
rior distributions centred in zero and low standard deviation, the
surface pressure is below 1 bar and atmospheric thicknesses are
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Fig. 5. One- and two-dimensional marginal posterior distributions for the atmospheric parameters (surface temperature Tsurf , atmospheric thickness
zatm, albedo, and atmospheric mass Matm), and bulk mass and radius, Mbulk and Rbulk, of TRAPPIST-1 b (left panel) and c (right panel). These were
derived under scenario 1, where we do not consider Fe/Si data.

below 100 km in most of the accepted models, which means that
in scenario 2 planets b and c are most likely dry rocky planets.

5. Discussion

5.1. WMF comparison with previous works

Agol et al. (2021) use the interior and atmosphere models pre-
sented in Dorn et al. (2018) and Turbet et al. (2020b) to obtain
the WMF estimated for the TRAPPIST-1 planets with updated
and more precise radii and masses data from Spitzer TTVs (Agol
et al. 2021). We therefore limited the comparison to the sole
results of Agol et al. (2021) with the same input values. By doing
so, we can be certain that the variations in WMF estimates are
due to our different modelling approach. Figure 6 shows that
planets b and c are most likely dry in scenario 2, where the
resulting CMFs are between 0.2 and 0.3 for the whole system.
We obtain maximum estimates of 3.4 × 10−6 and 2.7 × 10−6 for
b and c, respectively. For the same density, the estimated value of
the WMF depends on the CMF that is considered. Therefore, we
compare WMF estimates for similar CMFs in this work and Agol
et al. (2021). We show our WMF in scenario 2, because the CMF
of all planets spans a narrow range between 0.2 and 0.3, which
are the most similar values to one of the CMFs assumed by Agol
et al. (2021), CMF = 0.25. Our WMF for the steam planets of
the TRAPPIST-1 system are in agreement with those of Agol
et al. (2021), who calculated a maximum WMF of 10−5 for a
constant CMF of 0.25. We are able to reduce the maximum limit
of the water content of the highly irradiated planets compared
to previous studies and establish the most likely WMF with our
coupled atmosphere–interior model. The calculation of the total
radius requires precise determination of the atmospheric thick-
ness. This depends strongly on the surface temperature and the
surface gravity, which are obtained with radiative transfer in the
atmosphere, and the calculation of the gravity profile for a bulk
mass and composition in the interior self-consistently.
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Fig. 6. Water mass fraction as a function of the distance to the star for
the TRAPPIST-1 system. Upper panel: our estimates for scenario 1 and
those of Barr et al. (2018), where only mass and radius data were taken
into account. Lower panel: corresponds to scenario 2, whose CMF is
constrained in a narrow range between 0.2 and 0.3, while for Agol et al.
(2021) we show the WMF for a CMF of 0.25.

In the case of planet d, we estimate a WMF of 0.036 ± 0.028,
while Agol et al. (2021) obtain an upper limit of 10−5. The lat-
ter estimate considers that water is in vapour form, which is
less dense than condensed phases, while our model shows that
the surface conditions allow liquid or ice phases, resulting in
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Table 5. Comparison between our 1D 1σ confidence regions for the
CMF and those of Barr et al. (2018).

Planet CMF
Barr et al. (2018) This study (2020)

b 0.00–0.43 0.12–0.41
c 0.00–0.98 0.16–0.32
d 0.00–0.39 0.24–0.58
e 0.00–0.40 0.32–0.57
f 0.00 0.24–0.58
g 0.00 0.26–0.54
h 0.00 0.15–0.53

Notes. We show only estimates for scenario 1, because Barr et al.
(2018) did not consider any constraints on the Fe/Si ratio based on stellar
composition.

a higher WMF. This discrepancy in the possible water phases
on the surface of planet d is due to different atmospheric com-
positions. We consider a water-dominated atmosphere with 1%
CO2, while Agol et al. (2021) and Turbet et al. (2020b) assume
a N2 and H2O mixture. This difference in composition changes
the radiative balance because CO2 is a strong absorber in the IR
compared to N2, which is a neutral gas. Nonetheless, N2 is sub-
ject to stellar-wind-driven escape and is unlikely to be stable for
the inner planets of TRAPPIST-1, while CO2 is more likely to
survive thermal and ion escape processes (Turbet et al. 2020a).

Our WMF for planets e to h are in agreement within uncer-
tainties with those of Agol et al. (2021), although their central
values are significantly lower. The EOS employed to compute
the density of the water layers in Agol et al. (2021) is also used
in Dorn et al. (2018) and Vazan et al. (2013), which agrees well
with the widely used SESAME and ANEOS EOSs (Baraffe et al.
2008). These EOS are not consistent with experimental and the-
oretical data because they overestimate the density at pressures
higher than 70 GPa (Mazevet et al. 2019). This yields an under-
estimation of the WMF for the same total planetary density and
CMF.

For the specific case of scenario 1, with no assumptions on
the stellar composition and the Fe/Si mole ratio, we compared
our CMF and WMF with those obtained in Barr et al. (2018)
(Fig. 6 and Table 5). These latter authors use masses and radii
data given by Wang et al. (2017); they obtain lower masses
compared to Agol et al. (2021) while their radii are approxi-
mately the same, which would explain why Barr et al. (2018)
tend to overestimate the water content of the TRAPPIST-1
planets. Moreover, most of the mass uncertainties in Wang et al.
(2017) are 30–50%, while the mass uncertainties obtained by
Agol et al. (2021) are 3–5%. This causes Barr et al. (2018) to
calculate wider CMF and WMF 1σ confidence intervals. In
addition, there are differences between our interior modelling
approach and that of Barr et al. (2018). For example, according
to the results of these latter authors, planet b can have up to
50% of its mass as water. This high WMF value is due to the
assumption that the hydrosphere is in liquid and ice I phases,
and high-pressure ice polymorphs (HPPs), which are more
dense than the steam atmosphere we consider. In contrast, the
CMF seems to be closer to our estimates, especially for planets
b, d, and e, where their maximum CMF is approximately 0.40,
in agreement with our CMF 1σ intervals.

We can also discuss the possible habitability of the hydro-
spheres of the TRAPPIST-1 planets by comparing our WMF

estimates with the layer structure as a function of planetary mass
and water content obtained by Noack et al. (2016). According to
Noack et al. (2016), a habitable hydrosphere must be structured
in a single liquid water ocean or in several ice layers that enable
the formation of a lower ocean layer. This lower ocean would be
formed by the heat supplied by the mantle that melts the high-
pressure ice in the ice-mantle boundary (Noack et al. 2016). For
planet d, a surface liquid ocean would form for all its possible
WMF if the atmosphere allows for the presence of condensed
phases. For planets e, f, and g, the hydrosphere could be stratified
in a surface layer of ice Ih and a liquid or ice II-VI layer. In the
case of low-pressure ices II-VI, their base could be melted by the
heat provided by the mantle, and form a lower ocean layer as sug-
gested by Noack et al. (2016). At WMF ≥ 0.10, less than 50% of
the possible configurations enable a habitable sub-surface ocean
layer, and at a WMF ≥ 0.14, the hydrosphere is uninhabitable. In
scenario 1, planets e to g reach these values within uncertainties,
although their minimum values extend down to 0–0.03 in WMF,
which would be the habitable regime.

5.2. System formation and architecture

In the case of scenario 1, where no Fe/Si data are assumed, the
WMF increases with the distance to the star with the exception
of planet h, whose WMF is similar to that of planet d. In the case
of scenario 2, where a common Fe/Si of 0.76 ± 0.12 is assumed
for the whole system, the WMF increases with the distance to
the star (Fig. 6) with the exception of planet d whose WMF is
similar to that of planet f, which is more water-rich than planet e.
This slight deviation from the observed trend could be explained
by migration, where planet d could have formed beyond the snow
line before migrating inwards (Raymond et al. 2018). In addition,
pebble ablation and water recycling back into the disc could have
been less efficient for planet d than for planet e (Coleman et al.
2019). On the other hand, the gas at the distance at which planet
d formed could have been more enriched in volatiles than the
outer planets, accreting more water ice than planet e in a ‘cold
finger’ (Stevenson & Lunine 1988; Cyr et al. 1998). Pebble for-
mation in the vicinity of the water ice line can induce important
enhancements of the water ice fraction in those pebbles due to
the backward diffusion of vapour through the snowline and the
inward drift of ice particles. Therefore, if a planet forms from this
material, it should be more water-rich than those formed further
out (Mousis et al. 2019). These formation scenarios could explain
the high WMF of planet d when we assume that its water layer is
in condensed phases. Post-formation processes could also have
shaped the trend of the WMF with axis, such as atmospheric
escape due to XUV and X-ray emission from their host star.
Bolmont et al. (2017) estimated a maximum water loss of
15 Earth Oceans (EO) for TRAPPIST-1 b and c and 1 EO for
planet d. If we were to assume that the current WMFs are the
central values of the posterior distributions we derived in sce-
nario 1, planets b, c, and d would have had an initial WMF
of 2.37 × 10−3, 2.50 × 10−3 and 0.085, respectively. Therefore,
atmospheric escape would have decreased the individual WMF
of each planet, but the increase of WMF with distance from the
star would have been preserved.

In addition to the WMF–axis trend, we can differentiate the
very water-poor, close-in planets, b and c, from the outer, water-
rich planets, d to h. This has been reported as a consequence
of pebble accretion in the formation of other systems, such as
the Galilean moons. While Io is dry, Callisto and Ganymede
are water-rich, with Europa showing an intermediate WMF of
8% (Ronnet et al. 2017). Pebble-driven formation can produce
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Fig. 7. Mass–radius relationships for planets with CO2-dominated atmo-
spheres assuming different CMFs. The surface pressure is 300 bar. The
black dot and its error bars indicate the location and uncertainties of
planet d in the mass–radius diagram.

planets with WMF ≥ 15% if these are formed at the water ice
line (Coleman et al. 2019; Schoonenberg et al. 2019). In contrast,
planets formed within the ice line would present WMFs of less
than 5% (Liu et al. 2020; Coleman et al. 2019), which is close
to the mean value we calculate for planet h, 5.5%. The maxi-
mum WMF limit in the first scenario is approximately 20%. This
maximum limit is significantly lower than the typical WMF gen-
erated by the planetesimal accretion scenario, which is 50–40%
(Miguel et al. 2020). Therefore, our results are consistent with
the pebble-driven formation scenario.

5.3. Alternative atmospheric compositions

However, the atmosphere of planet d could be dominated by
other atmospheric gases different from H2O-based mixtures,
which could produce an extended atmosphere and increase the
total planetary radius. Hydrogen-dominated atmospheres have
been deemed unlikely as one of the possible atmospheric com-
positions for all planets in the TRAPPIST-1 system, both cloud-
free (de Wit et al. 2016, 2018) and with high-altitude clouds
and hazes (Grimm et al. 2018; Ducrot et al. 2020). Similarly,
CH4-dominated atmospheres are not probable according to the
photometry data of the Spitzer Space Telescope (Ducrot et al.
2020). Therefore, our best candidate to explain the low den-
sity of planet d in a water-poor scenario is CO2. We find that
a CO2-dominated atmosphere with 1% water vapour in planet d
would be in radiative-convective equilibrium by computing the
OLR and absorbed radiation, as we have for water-dominated
atmospheres. The resulting surface temperature is approximately
950 K, which is slightly higher than the surface temperature of
Venus (700 K) with a higher water vapour mixing ratio. Figure 7
introduces the mass–radius relationships for different CMFs,
assuming a CO2-dominated atmosphere with a surface pressure
of 300 bar. Planet d appears to be compatible with a planet with
a CO2-dominated atmosphere and CMF between 0.2 and 0.3,
which is a very likely CMF range for TRAPPIST-1 planets based
on our analysis. Surface pressures lower than 300 bar would yield
lower atmospheric thicknesses, and so it would be necessary to
consider a lower CMF to explain the observed density of planet
d. CO2 in the case of planet d can be provided by volcanic out-
gassing (Ortenzi et al. 2020), as its internal heat flux produced by
tidal heating is in the range 0.04–2 W m−2, which favours plate
tectonics (Papaloizou et al. 2018). Secondary CO2-dominated
atmospheres could have traces of O2, N2, and water vapour.

6. Conclusions
We present an interior structure model for low-mass planets at
different irradiations that is valid for a wide range of water
phases and was derived from the approaches of Brugger et al.
(2017) and Mousis et al. (2020). For highly irradiated planets,
we couple a 1D water steam atmosphere in radiative–convective
equilibrium with a high-pressure convective layer in supercriti-
cal phase. The density in this layer is computed using an accurate
EOS for high-pressure and high-temperature water phases. For
temperate planets whose surface conditions allow the formation
of condensed phases, we implemented a hydrosphere with liquid
water and ice phases Ih, II, III, V, VI and VII. In addition, we
adapted the MCMC Bayesian algorithm described in Dorn et al.
(2015) to our interior model to derive the posterior distributions
of the compositional parameters, WMF and CMF, given mass,
radius, and stellar composition data. We then applied our inte-
rior model to the particular case of TRAPPIST-1 planets using
the latest mass and radius data from Spitzer (Agol et al. 2021).

We characterised the hydrospheres of TRAPPIST-1 plan-
ets by calculating their P-T profiles and thermodynamic phases.
Planets b and c are warm enough to present steam atmospheres.
They could hold post-runaway greenhouse atmospheres with
thicknesses of up to 450 km and surface temperatures of up
to 2500 K, which means that they are extended enough to be
suitable targets for atmospheric characterisation by future space-
based facilities such as James Webb Space Telescope (JWST).
Moreover, planets d to g present hydrospheres in condensed
phases. These hydrospheres can contain high-pressure ices that
start to form at 109−1010 Pa.

We obtained CMF and WMF probability distributions for
all planets in the system. We find that the Fe/Si mole ratio of
the system is in the 0.45–0.97 range without considering any
assumption on the chemical composition of the stellar host. This
Fe/Si range corresponds to a CMF value in the 0.23–0.40 range,
making the CMF of TRAPPIST-1 planets compatible with an
Earth-like value (0.32). In addition, our WMF estimates agree
within uncertainties with those derived by Agol et al. (2021),
although their most likely values are considerably lower for plan-
ets with condensed phases. In the case of planets with steam
hydrospheres, their densities are compatible with dry rocky plan-
ets with no atmospheres. Nevertheless, we cannot rule out the
presence of an atmosphere with the Fe/Si range we derive with-
out any assumption on the chemical composition of the host star.
When considering a possible estimate of the Fe/Si ratio of the
host star (scenario 2), we obtain lower maximum limits of the
WMF for planets b and c compared to previously calculated lim-
its by Agol et al. (2021) for a similar CMF of 0.25. Our estimated
WMFs in steam and condensed phases are consistent with an
increase in the WMF with progressing distance from the host
star. This trend, as well as the maximum WMF we calculate,
favour pebble-driven accretion as a plausible formation mecha-
nism for the TRAPPIST-1 system. However, planet d presents
a slightly higher WMF than planet e. This could be due to
processes that took place during planet formation, such as migra-
tion, a low-efficient ablation of pebbles, and gas recycling, or an
enhancement of the water ice fraction in pebbles at the distance
of the disc where planet d formed. An extended atmosphere dom-
inated by greenhouse gases different from a water-dominated
atmosphere, such as CO2, could also explain the low-density of
planet d compared to planet e.

Future work should include more atmospheric processes
and species that determine the mass–radius relations of planets
with secondary atmospheres in the super-Earth and sub-Neptune
regime. These can vary the atmospheric thickness and increase
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the total planetary radius with varying atmospheric mass while
other compositional parameters change the bulk radius. These
should be integrated into one single interior-atmosphere model
combined in a MCMC Bayesian framework such as the one we
used in this study. This statistical approach has been employed
with interior models for planets with H/He-dominated atmo-
spheres (Dorn et al. 2017b,a, 2018), or dry planets (Plotnykov
& Valencia 2020), but not for planets with secondary, CO2 and
steam-dominated atmospheres. The integrated model should also
include a description of escape processes, such as hydrodynamic
or Jeans escapes, which is particularly interesting for exploration
of the lifetime of secondary atmospheres. Close-in, low-mass
planets are likely to outgas atmospheric species such as CO2,
and form O2 via photodissociation of outgassed H2O during
their magma ocean stage or due to plate tectonics (Chao et al.
2020). A mixture of these gases should therefore be consid-
ered to study the thermal structure of planets with secondary
atmospheres. Planets b and c in the TRAPPIST-1 system could
present magma oceans due to their high surface temperatures
(T ≥ 1300 K) (Barr et al. 2018; Chao et al. 2020), and the
maximum surface pressure we have obtained here can be used
to assess the current outgassing rate in magma ocean stud-
ies (Noack et al. 2017; Baumeister et al., in prep.) and better
constrain the WMF for the interior magma ocean models (e.g.
Katyal et al. 2020) in the future.
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A. First-author contributions – A.2. Water content trends in K2-138 and other low-mass
multi-planetary systems (Acuña et al. 2022)

A.2. Water content trends in K2-138 and other low-mass
multi-planetary systems (Acuña et al. 2022)

L. Acuña, T. A. Lopez, T. Morel, M. Deleuil, O. Mousis, A. Aguichine, E. Marcq, and A. Santerne

This is the second first-author publication resulting from the research carried out in this thesis.
The model implementation is similar to the one used in Acuña et al. (2021). See Sect. 2.2 to read
more about the version of the interior model that includes supercritical water phases, Chapter 3 for
the interior-atmosphere coupling algorithm, and Sect. 5.1 for the non-adaptive MCMC. The results
of applying this version of the interior-atmosphere model to a sample of multiplanetary systems
with low-mass planets can be found in Sect. 6.2, together with a discussion on planet formation
scenarios.
The work shown in this publication was also presented in the following conferences:

• PLATO mission conference 2021, as a contributed talk, in October 2021 (virtual)

• Europlanet Science Conference (EPSC) 2021, as a contributed talk, in September 2021 (virtual)

• Semaine de la Astrophysique Française (SF2A) 2021, as a contributed talk, in June 2021 (virtual)
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ABSTRACT

Context. Both rocky super-Earths and volatile-rich sub-Neptunes have been found simultaneously in multi-planetary systems, sug-
gesting that these systems are appropriate to study different composition and formation pathways within the same environment.
Aims. We perform a homogeneous interior structure analysis of five multi-planetary systems to explore compositional trends and their
relation with planet formation. For one of these systems, K2-138, we present revised masses and stellar host chemical abundances to
improve the constraints on the interior composition of its planets.
Methods. We conducted a line-by-line differential spectroscopic analysis on the stellar spectra of K2-138 to obtain its chemical abun-
dances and the planetary parameters. We selected multi-planetary systems with five or more low-mass planets (M < 20 M⊕) that have
both mass and radius data available. We carried out a homogeneous interior structure analysis on the planetary systems K2-138, TOI-
178, Kepler-11, Kepler-102, and Kepler-80. We estimated the volatile mass fraction of the planets in these systems assuming a volatile
layer constituted of water in steam and supercritical phases. Our interior-atmosphere model took the effects of irradiation on the surface
conditions into account.
Results. K2-138 inner planets present an increasing volatile mass fraction with distance from their host star, while the outer planets
present an approximately constant water content. This is similar to the trend observed in TRAPPIST-1 in a previous analysis with the
same interior-atmosphere model. The Kepler-102 system could potentially present this trend. In all multi-planetary systems, the low
volatile mass fraction of the inner planets could be due to atmospheric escape, while the higher volatile mass fraction of the outer
planets can be the result of accretion of ice-rich material in the vicinity of the ice line with later inward migration. Kepler-102 and
Kepler-80 present inner planets with high core mass fractions which could be due to mantle evaporation, impacts, or formation in the
vicinity of rocklines.

Key words. stars: abundances – stars: individual: K2-138 – planets and satellites: interiors – planets and satellites: composition –
planets and satellites: individual: K2-138 – methods: numerical

1. Introduction

Multi-planetary systems appear to be suitable distant laborato-
ries to explore the diversity of small planets, as well as their
formation and evolution pathways. This is the case for Kepler-
36 (Carter et al. 2012), where its two planets, b and c, present
periods of 14 and 16 days with densities of 7.5 and 0.9 g cm−3,
respectively. This suggests that these planets may have formed
in different environments within the same protoplanetary disc
before migrating inwards. Furthermore, a decreasing density gra-
dient with distance from the host star in multi-planetary systems
with six to seven planets, such as TRAPPIST-1 (Acuña et al.
2021; Agol et al. 2021) and TOI-178 (Leleu et al. 2021), sug-
gest that there might be a transition between the rocky, inner
super-Earths and the outer, volatile-rich sub-Neptunes. This tran-
sition is most probably due to the presence of the snowline in the
protoplanetary disc (Ruden 1999).

Nevertheless, there are currently several limitations to deter-
mining the variation of the volatile mass fraction of planets

? Based on observations made with ESO Telescopes at the La Silla
Paranal Observatory under programme ID 198.C-0.168.

within their systems, including the precision reached on the fun-
damental parameters of both the planets and the star as well
as the different assumptions considered between different inte-
rior structure models. These assumptions include whether the
volatile layer of the planet is fully constituted of H/He (Lopez
& Fortney 2014), an ice layer (Zeng et al. 2019), an ice layer
with a H/He atmosphere on top (Dorn et al. 2015), or a steam
and/or supercritical water layer (Mousis et al. 2020; Turbet et al.
2020). To overcome the differences in volatile mass fraction
estimates of multi-planetary systems due to the different com-
positions of the volatile layer between interior structure models,
we performed a homogeneous analysis of the interior structure
and composition of several multi-planetary systems. For our
interior structure model, we assumed that the volatile layer is
water-dominated, following the approach of Mousis et al. (2020)
and Acuña et al. (2021). This analysis allowed us to uncover
volatile and core mass fraction trends, and their connection with
planet formation and evolution. We used previously published
masses, radii, and stellar composition data for four systems, and
we performed our own spectroscopic analysis to improve the
parameters of one system, K2-138, whose detection was reported
in Christiansen et al. (2018). K2-138 harbours six small planets
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in a chain of near 3:2 mean-motion resonances and benefitted
from a radial velocity ground-based follow-up with HARPS on
the 3.6 m telescope at La Silla Observatory, leading to the confir-
mation and mass measurements of the four inner planets (Lopez
et al. 2019), with relatively good precisions given the standard
today. In order to bring stronger constraints on the stellar param-
eters and abundances and further reduce the degeneracies in
the planetary structure modelling, we carried out an in-depth
analysis of K2-138.

Section 2 presents the new detailed analysis of the stellar host
in the K2-138 system, which allowed us to derive stellar funda-
mental parameters and the elemental abundances using the Sun
and α Cen B as benchmarks. Section 3 describes a new Bayesian
analysis of the HARPS radial velocities and K2 photometry,
using the new stellar parameters.

We describe our interior-atmosphere modelling in Sect. 4,
including our calculation of atmospheric mass-loss rates to infer
the current presence or absence of volatiles. We present the
volatile and core mass fraction trends for each mutiplanetary sys-
tem as a result of our homogeneous analysis in Sect. 5. Finally,
we discuss the planet formation and evolution mechanisms that
could have shaped these compositional trends in Sect. 6. We
present our concluding remarks in Sect. 7.

2. Spectroscopic analysis

K2-138 stellar parameters and abundances were derived based
on a differential, line-by-line analysis relative to the Sun. The
solar abundances are determined as part of such an analysis
(e.g. Meléndez et al. 2012) and a set of reference values is
not assumed. We used the HARPS spectra retrieved under pro-
gramme ID 198.C-0.168. These were corrected from systemic
velocity and planetary reflex motion, removing the spectra with
a signal-to-noise ratio (S/N) lower than 10 in order 47 (550 nm)
and the ones contaminated by the moonlight (S/N above 1.0 in
fibre B). We then co-added the spectra in a single 1D spectrum
and normalised it to the continuum. For the Sun, we used the
HARPS spectra extracted from the ESO instrument archives1,
acquired under programme ID 088.C-0323. The reduction of
the solar spectrum, obtained just as the spectrum of the light
reflected by Vesta, is detailed in Haywood et al. (2016) and the
co-addition was performed as for K2-138.

The stellar parameters and abundances of 24 metal species
were self-consistently determined from the spectra, plane-
parallel MARCS model atmospheres (Gustafsson et al. 2008),
and the 2017 version of the line-analysis software MOOG origi-
nally developed by Sneden (1973). The equivalent widths (EWs)
were measured manually using IRAF2 tasks assuming Gaussian
profiles. Strong lines with RW = log(EW/λ)> –4.80 were dis-
carded. This constraint on the line strength was relaxed for Mg
because it would result in no Mg I lines left.

2.1. Stellar parameters

The stellar parameters of K2-138 and α Cen B appear to
be similar (see below). Therefore, we also analysed the lat-
ter for benchmarking because it has accurate and nearly
model-independent Teff and log g estimates from long-baseline

1 http://archive.eso.org
2 IRAF is distributed by the National Optical Astronomy Observatories,
operated by the Association of Universities for Research in Astron-
omy, Inc., under cooperative agreement with the National Science
Foundation.

interferometry and asteroseismology, respectively. K2-138 and α
Cen B were observed with exactly the same instrumental setup,
which ensures the highest consistency (Bedell et al. 2014). The
α Cen B spectra were selected from the ESO archive, keep-
ing those corrected from the blaze and with an S/N higher
than 350 in order 47. For α Cen B, we adopt in the follow-
ing Teff = 5231± 21 K derived by Kervella et al. (2017) from
their Very Large Telescope Interferometer (VLTI)/Precision
Integrated-Optics Near-infrared Imaging Experiment (PIO-
NIER) measurements and the bolometric flux of Boyajian et al.
(2013). We also assumed log g= 4.53± 0.02 dex (Heiter et al.
2015) based on scaling relations making use of the frequency
of maximum oscillation power, νmax, determined from radial-
velocity time series by Kjeldsen et al. (2008).

The model parameters (Teff , log g, ξ, and [Fe/H]) were iter-
atively modified until the excitation and ionisation balance of
iron was fulfilled and the Fe I abundances exhibited no trend
with RW. The abundances of iron and the α elements were also
required to be consistent with the values adopted for the model
atmosphere. For the solar analysis, Teff and log g were held fixed
to 5777 K and 4.44 dex, respectively, whereas the microturbu-
lence, ξ, was left as a free parameter. The uncertainties in the
stellar parameters were computed as in Morel (2018).

We first carried out the analysis of α Cen B and K2-138 using
various iron line lists (Biazzo et al. 2012; Doyle et al. 2017;
Feltzing & Gonzalez 2001; Jofré et al. 2014; Meléndez et al.
2014; Morel et al. 2014; Reddy et al. 2003; Tsantaki et al. 2019).
For Jofré et al. (2014), we adopted their FG Dwarf “FGDa” line
list. The goal was to identify the line list that provides the most
accurate parameters based on a comparison with the interfero-
metric and asteroseismic constraints at hand for α Cen B. To
ensure the highest consistency, the spectral features on which
the analysis is based for a given line list were exactly the same
for the three stars.

The parameters obtained are given in Table 1 and shown in
Fig. 1. The surface gravity of α Cen B appears to be underes-
timated in most cases. We also experimented with the LW13
Ti line list of Tsantaki et al. (2019) to constrain this quantity
through Ti ionisation balance. As discussed by these authors,
this leads to a larger value, amounting to ∼0.11 dex here. How-
ever, it still falls short of matching the seismic value. As can be
seen in Fig. 1, the only notable difference between the parame-
ters of α Cen B and K2-138 is that the latter is slightly poorer in
metals. Indeed, a differential analysis of K2-138 with respect to
α Cen B adopting the line list of Biazzo et al. (2012) gives the
following results: ∆Teff = –10± 45 K, ∆log g= +0.02± 0.09 dex,
∆ξ = +0.03± 0.09 km s−1, and ∆[Fe/H] = –0.11± 0.04. For the
abundance analysis of K2-138, in the following we adopt the
parameters provided by the line list of Biazzo et al. (2012):
Teff = 5275± 50 K, log g= 4.50± 0.11, ξ = 0.95± 0.10 km s−1, and
[Fe/H] = +0.08± 0.05. This choice was motivated by the fact that
it leads to parameters that reproduce those of the reference for α
Cen B within the errors. In addition, the metallicity is within the
range of accepted values for the binary system (Morel 2018, and
references therein).

However, from the comparison to the interferometric-based
Teff in Fig. 1, we cannot rule out that the effective temperature of
K2-138 is slightly overestimated at the ∼50 K level. The analy-
sis was also repeated using Kurucz atmosphere models (Castelli
& Kurucz 2003). The following modest deviations with respect
to the default values (Kurucz – MARCS) were found: ∆Teff ∼
+10 K, ∆ log g∼+0.02 dex, and ∆[Fe/H]∼+0.02 dex. We exam-
ine the robustness of our abundance results against such putative
systematic errors in Sect. 2.2. In any case, we find that K2-138 is
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Table 1. Stellar parameters of α Cen B and K2-138, as obtained from the various iron line lists.

α Cen B K2-138

Teff log g ξ [Fe/H] Teff log g ξ [Fe/H]
Iron line list (K) (km s−1) (K) (km s−1)

Biazzo et al. (2012) 5285± 60 4.49± 0.14 0.909± 0.121 0.200± 0.051 5275± 50 4.50± 0.11 0.945± 0.099 0.084± 0.043
Doyle et al. (2017) 5245± 32 4.35± 0.08 0.490± 0.146 0.185± 0.043 5235± 30 4.43± 0.07 0.450± 0.146 0.083± 0.034
Feltzing & Gonzalez (2001) 5330± 41 4.48± 0.11 0.890± 0.100 0.220± 0.040 5280± 38 4.46± 0.10 0.915± 0.084 0.100± 0.035
Jofré et al. (2014) 5210± 77 4.31± 0.11 0.500± 0.221 0.181± 0.063 5210± 66 4.37± 0.11 0.555± 0.190 0.069± 0.054
Meléndez et al. (2014) 5270± 35 4.37± 0.08 0.755± 0.133 0.174± 0.044 5255± 24 4.44± 0.06 0.767± 0.105 0.070± 0.031
Morel et al. (2014) 5265± 31 4.35± 0.09 0.795± 0.102 0.197± 0.031 5275± 31 4.45± 0.08 0.870± 0.089 0.089± 0.032
Reddy et al. (2003) 5320± 38 4.51± 0.11 0.900± 0.062 0.218± 0.036 5295± 29 4.52± 0.09 0.958± 0.046 0.092± 0.027
Tsantaki et al. (2019) 5190± 64 4.26± 0.09 0.590± 0.149 0.163± 0.048 5140± 81 4.35± 0.08 0.485± 0.198 0.050± 0.049

Notes. For iron, 42 Fe I and 4 Fe II lines were used.

Fig. 1. Results of the analysis of
α Cen B (left panels) and K2-138
(right panels) using the various iron
line lists. The colour coding for each
line list is indicated in the upper
left panel. The parameters of K2-
138 determined by Christiansen et al.
(2018) are shown in the right pan-
els. The grey-shaded areas for α
Cen B delimit the interferometric Teff

and seismic log g values (± 1 σ; see
Sect. 2.1 for details).

cooler and less metal rich than concluded by Christiansen et al.
(2018).

2.2. Stellar abundances

We proceed for the abundance analysis with the extensive line
list of Meléndez et al. (2014) because the lines of some impor-
tant elements (e.g. Mg) in Biazzo et al. (2012) are not covered by
our observations. A hyperfine structure was taken into account
for Sc, V, Mn, Co, and Cu using atomic data from the Kurucz
database3, while the Eu data were taken from Ivans et al. (2006).

3 Available at http://kurucz.harvard.edu/linelists.html

A classical curve-of-growth analysis making use of the EWs was
performed for most species. However, the determination of some
abundances relied on spectral synthesis. The oxygen abundance
was based on [O I] λ630.0, while the C abundance was also esti-
mated from the C2 lines at 508.6 and 513.5 nm. Readers can
refer to Morel et al. (2014) for further details on the modelling of
the [O I] and C2 features. Finally, the Eu abundance was based
on a synthesis of a number of Eu II lines (for details, see Wang
et al. 2020). For K2-138, v sin i = 2.5 and a macroturbulence of
1.9 km s−1 were assumed based on the analysis reported in Lopez
et al. (2019). An attempt was made to model Li I λ670.8. The line
is not detected in K2-138, but the Li abundance appears to be
much lower than solar.
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Table 2. Abundance results for K2-138.

Abundance ratio Default Teff scale Cooler Teff scale

[Fe/H] +0.08± 0.05 (42+4) +0.01

[C I/Fe] –0.04± 0.08 (3) +0.03
[C2/Fe] –0.07± 0.09 (2) –0.01
[O I/Fe] +0.03± 0.10 (1) –0.01
[Na I/Fe] +0.02± 0.06 (3) –0.04
[Mg I/Fe] –0.06± 0.08 (3) –0.05
[Al I/Fe] +0.01± 0.05 (2) –0.04
[Si I/Fe] +0.01± 0.04 (10) +0.00
[Ca I/Fe] +0.04± 0.06 (3) –0.05
[Sc I/Fe] –0.03± 0.10 (4) –0.06
[Sc II/Fe] –0.01± 0.05 (5) –0.01
[Ti I/Fe] +0.01± 0.08 (14) –0.07
[Ti II/Fe] +0.01± 0.06 (10) +0.00
[V I/Fe] +0.03± 0.08 (5) –0.07
[Cr I/Fe] +0.03± 0.05 (7) –0.04
[Cr II/Fe] +0.08± 0.04 (4) +0.01
[Mn I/Fe] +0.04± 0.07 (5) –0.05
[Co I/Fe] +0.00± 0.06 (7) –0.03
[Ni I/Fe] +0.00± 0.04 (14) –0.02
[Cu I/Fe] –0.02± 0.03 (2) –0.02
[Zn I/Fe] –0.01± 0.03 (3) +0.00
[Sr I/Fe] +0.01± 0.09 (1) –0.07
[Y II/Fe] +0.02± 0.07 (4) –0.01
[Zr II/Fe] +0.06± 0.06 (2) –0.02
[Ba II/Fe] +0.02± 0.07 (1) –0.02
[Ce II/Fe] +0.01± 0.08 (5) –0.02
[Nd II/Fe] +0.07± 0.05 (3) –0.02
[Eu II/Fe] +0.04± 0.08 (3) –0.02

[C I/O I] –0.07± 0.13 +0.04
[C2/O I] –0.10± 0.12 +0.00
[Mg I/Si I] –0.07± 0.08 –0.05

Notes. The last column shows the impact of lowering Teff by 50 K (see
Sect. 2.1), while keeping log g and ξ unchanged. The number in brack-
ets gives the number of lines the abundance is based on. For iron, the
number of Fe I and Fe II lines is given.

The abundances are provided in Table 2. The random uncer-
tainties were estimated following Morel (2018). For the spectral
synthesis, additional sources of errors (e.g. continuum place-
ment) were taken into account (see Morel et al. 2014). The O
abundance is based on a single line that is weak (EW< 10 mÅ)
and blended with a Ni line. It is therefore uncertain. The same
is true for the Mg abundance that is based on three strong lines
exhibiting quite a large line-to-line scatter (∼0.05 dex).

The impact of lowering Teff by 50 K (see Sect. 2.1) is also
given in Table 2. The Sc, Ti, and Cr abundances were derived
from both neutral and singly ionised species. Ionisation balance
is fulfilled within the uncertainties in all cases assuming the
default parameters. However, it can be noted that the agreement
systematically degrades for the cooler Teff scale.

3. PASTIS analysis

The joint analysis of the HARPS radial velocities, K2 light curve
and spectral energy distribution (SED) was carried out using the
Bayesian software PASTIS (Díaz et al. 2014). Improvements with
respect to our previous analysis in Lopez et al. (2019) include
the following: (1) the radial velocities were binned nightly to
average out the correlated high-frequency noise resulting from
granulation and instrumental calibrations, and (2) the new stellar
parameters, as derived in Sect. 2.1, were used as priors. We ran
two sets of analysis with the adopted Teff and lowered by 50 K,
as the latter cannot be ruled out, as reported in Sect. 2.1.

The magnitudes used to construct the SED were taken from
the American Association of Variable Star Observers Photomet-
ric All-Sky Survey (Henden et al. 2015) archive in the optical,
from the Two-Micron All-Sky Survey (Munari et al. 2014) and
the Wide-field Infrared Survey Explorer (Cutri & et al. 2014)
archives in the near-infrared. The SED was modelled with the
BTSettl stellar atmospheric models (Allard et al. 2012). The
radial velocities were modelled with Keplerian orbit models for
the planetary contribution and with a Gaussian process regres-
sion for the correlated noise induced by the activity. For the
latter, the following quasi-periodic kernel was used:

k(ti, t j) = A2 exp

−
1
2

(
ti − t j

λ1

)2

− 2
λ2

2

sin2


π
∣∣∣ti − t j

∣∣∣
Prot




(1)

+δi j

√
σ2

i + σ2
J

where A corresponds to the radial velocity modulation ampli-
tude, Prot to the stellar rotation period, λ1 to the correlation decay
timescale of the active regions, λ2 to the relative contribution
between the periodic and the decaying components, and σJ to
the radial velocity jitter. To model the photometry, we used the
JKT Eclipsing Binary Orbit Program (Southworth 2008) with
an oversampling factor of 30 to account for the long integration
time of Kepler (Kipping 2010). The star was modelled with the
PARSEC evolution tracks (Bressan et al. 2012), taking the aster-
odensity profiling into account (Kipping 2014), and with the limb
darkening coefficients taken from Claret & Bloemen (2011).

We ran 80 Markov chain Monte Carlo (MCMC) chains with
106 iterations for the two different effective temperatures to
explore the posterior distributions of the parameters. The conver-
gence was assessed with a Kolmogorov–Smirnov test (Brooks
et al. 2003). The burn-in phase was then removed (Díaz et al.
2014) and the remaining iterations of the different chains hav-
ing converged were merged. Both analyses, with Teff and Teff

lowered by 50 K, converged towards the same distributions, and
in particular the same median effective temperature was found
for both. Therefore we only report the posteriors for the analy-
sis based on Teff = 5275 K, along with the priors used. These are
shown in Table A.1.

The parameters obtained are fully compatible with that
of Lopez et al. (2019). In particular, we found masses of
2.80+0.94

−0.96 M⊕, 5.95+1.17
−1.12 M⊕, 7.20± 1.40 M⊕, and 11.28+2.78

−2.72 M⊕
for planets b, c, d, and e, respectively, giving a precision of 34%,
20%, 19%, and 25%. For planets f and g, the median values on
the masses are 2.43+3.05

−1.75 M⊕ and 2.45+2.92
−1.74 M⊕, respectively, giv-

ing a significance of 1.4 σ for both planets. For planet g, the
non detection is not surprising given the relatively long orbital
period for a planet with a radius compatible with a low-density
planet. Conversely, for planet f, we cannot exclude absorption of
the signal by the Gaussian process given that its orbital period
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is half the stellar rotation period. Further discussion on the con-
straints and upper limits of the planetary masses can be found in
Lopez et al. (2019). The parameters of the planets were then used
as input for the planets’ modelling described in the following
section (see Table A.1).

4. Composition analysis

4.1. Interior-atmosphere model

We used the internal structure model initially developed by
Brugger et al. (2017) and Mousis et al. (2020), and recently
updated by Acuña et al. (2021) for their internal composition’s
study. The model can accommodate a surface water layer. To
consider the effect of the stellar irradiation on this layer, we
included a water-rich atmosphere on top of the high-pressure
water layer or the mantle by coupling the interior to an atmo-
sphere model. The atmospheric model computes the temperature
at the bottom of the atmosphere, which is the boundary condition
for the interior model. As a result, our current atmosphere-
interior model allows us to assess in detail how well a close-in
planet, similar to the ones we analyse in Sect. 5, can support a
water-rich layer either in a liquid, vapour, or supercritical state
depending on the surface temperature.

Our atmosphere-interior model takes the irradiation received
by the planet into account and calculates the surface tempera-
ture assuming a water-rich atmosphere on top of a high-pressure
water layer or a mantle. Therefore, in Sect. 5, we use the
terms volatile mass fraction and water mass fraction interchange-
ably. The planets in the multi-planetary systems we analyse are
highly irradiated, with irradiation temperatures ranging from
approximately 1300 K to 500 K (see Table 5). Depending on the
corresponding surface conditions, if water is present, it can be in
a vapour or supercritical state.

The input variables of the interior structure model are the
total planetary mass, the core mass fraction (CMF), and the
water mass fraction (WMF), while the model outputs the total
planetary radius and the Fe/Si mole ratio. In order to explore
the parameter space, we performed a complete Bayesian analysis
to obtain the probability density distributions of the parameters.
This Bayesian analysis was carried out via the implementation of
a MCMC algorithm, by adapting the method proposed by Dorn
et al. (2015) to our interior and atmosphere model as described
in Acuña et al. (2021).

Initial values of the three input parameters were randomly
drawn from their prior distributions, which correspond to a
Gaussian distribution for the mass, and uniform distributions for
the CMF and the WMF. We established a maximum WMF in
the uniform prior of 80% based on the maximum water content
found in Solar System bodies (McKay et al. 2019). For the atmo-
sphere, we have considered a composition of 99% water and 1%
carbon dioxide. The atmosphere and the interior are coupled at
a pressure of 300 bar. We considered the stellar spectral distri-
bution of a Sun-like star for the calculation of the Bond albedo.
The atmospheric mass, thickness, Bond albedo, and temperature
at the bottom of the atmosphere are provided by a grid generated
with the atmospheric model described in Marcq et al. (2017) and
Pluriel et al. (2019).

4.2. Atmospheric escape

Atmospheric mass loss in super-Earths and sub-Neptunes can be
produced by thermal or non-thermal escape, with Jeans escape
(Jeans 1925), XUV photoevaporation (Owen & Jackson 2012), or

core-powered mass loss (Ginzburg et al. 2016). These processes
might shape the trend of the volatile mass fraction (water, H/He,
or a combination of both) in the inner region of multi-planetary
systems. An estimate of the mass loss rates of different species
can help to discriminate between two possible interior compo-
sitions. In our Solar System, Jeans’ escape efficiently removed
lighter gases as H2 and He on telluric planets, leaving heavier
molecules. For the planets in the K2-138 system, we estimated
Jeans mass loss rates (Aguichine et al. 2021) by using the masses,
radii, and equilibrium temperatures we obtained as a result of our
spectroscopic analysis as input (Sect. 2). For the rest of the multi-
planetary systems we analysed, we used the parameters provided
by the references we mention in Sect. 4.3.

The hydrodynamic escape of H-He is driven by the incident
XUV flux from the host star. A star’s XUV luminosity LXUV is
usually constant at early stages, called a saturation regime (a few
tens of megayears), and then it evolves as a power-law function
of time LXUV ∝ tα, with α ' −1.5 (Sanz-Forcada et al. 2011).
Computing the mass loss rate from Owen & Jackson (2012), we
get the following:

ṁ = η
LXUVR3

b

GMb(2ab)2 , (2)

where G is the gravitational constant and η= 0.1 is an effi-
ciency factor (Owen & Jackson 2012). Following the approach in
Aguichine et al. (2021), we integrated Eq. (2) over time assum-
ing that only LXUV can vary, implying the mass and radius do not
change significantly, to calculate the total lost mass.

4.3. Multi-planetary systems parameters

In addition to K2-138, we selected a sample of multi-planetary
systems that host only low-mass planets (M < 20 M⊕), with five
or more planets that have masses and radii available. These sys-
tems are TOI-178, Kepler-11, Kepler-102, and Kepler-80. For
K2-138, we took the planetary mass and radius derived in Sect. 3,
and the corrected Fe/Si molar ratio. The latter was estimated as
Fe/Si = 0.77± 0.07, using the metallicity and the Mg, Al, Si, Ca,
and Ni abundances presented in Sect. 2.2, following Sotin et al.
(2007) and Brugger et al. (2017).

For the other systems, we performed the same modelling,
taking masses, radii, and stellar abundances from Leleu et al.
(2021) for TOI-178; Lissauer et al. (2011) and Brewer et al.
(2016) for Kepler-11; Marcy et al. (2014) and Brewer & Fischer
(2018) for Kepler-102; and MacDonald et al. (2016, 2021) for
Kepler-80. We show a summary of the parameters we used in
Table 3. The Fe/Si mole ratios of these systems were computed
similarly to the Fe/Si mole ratio of K2-138 from their respective
host stellar abundances.

5. Compositional trends in multi-planetary systems

Table 4 shows the retrieved CMF and WMF and their one-
dimensional 1σ uncertainties as a result of our Bayesian
analysis, as well as their atmospheric mass loss estimates.
To assess how compatible a water-rich composition is with
the data, we also show the difference between the observa-
tional mean and the retrieved mean, which is calculated as
dobs-ret = max{|Rdata − R|, |Mdata − M|}. If dobs-ret is below 1σ, the
retrieved mass and radius agree within the 1σ confidence inter-
vals with the observed mass and radius, meaning that the density
of a planet is compatible with a volatile layer dominated by
water. A high dobs-ret (>1 σ) and a high WMF in our model
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Table 3. Masses, radii, semi-major axis, and irradiation temperature for the multi-planetary systems TOI-178, Kepler-11, Kepler-102, and Kepler-80.

System Planet M (M⊕) R (R⊕) ad (AU) Tirr (K)

TOI-178

b 1.5+0.39
−0.44 1.152+0.073

−0.070 0.026 1040

c 4.77+0.55
−0.68 1.669 +0.114

−0.099 0.037 873

d 3.01+0.80
−1.03 2.572+0.075

−0.078 0.059 691

e 3.86+1.25
−0.94 2.207+0.088

−0.090 0.078 600

f 7.72+1.67
−1.52 2.287+0.108

−0.110 0.104 521

g 3.94+1.31
−1.62 2.87+0.14

−0.13 0.128 471

Kepler-11

b 4.3+2.2
−2.0 1.97± 0.19 0.091 953

c 13.5+4.8
−6.1 3.15± 0.30 0.106 883

d 6.1+3.1
−1.7 3.43± 0.32 0.159 721

e 8.4+2.5
−1.9 4.52± 0.43 0.194 653

f 2.3+2.2
−1.2 2.61± 0.25 0.250 575

Kepler-102

b 0.41± 1.6 0.47± 0.02 0.055 868
c –1.58± 2.0 0.58± 0.02 0.067 786

d 3.80± 1.8 1.18± 0.04 0.086 597

e 8.93± 2.0 2.22± 0.07 0.117 694

f 0.62± 3.3 0.88± 0.03 0.165 501

Kepler-80

d 5.95+0.65
−0.60 1.309+0.036

−0.032 0.033 990

e 2.97+0.76
−0.65 1.330+0.039

−0.038 0.044 863

b 3.50+0.63
−0.57 2.367+0.055

−0.052 0.058 750

c 3.49+0.63
−0.57 2.507+0.061

−0.058 0.071 679

g 0.065+0.044
−0.038 1.05+0.22

−0.24 0.094 588

Notes. References can be found in Sect. 4.3.

Table 4. Retrieved core mass fraction (CMF) and water mass fraction (WMF) of planets in the multi-planetary systems K2-138, TOI-178, Kepler-11,
Kepler-102, and Kepler-80, with our interior-atmosphere model.

System Planet CMF WMF dobs-ret ∆MH2 (M⊕) ∆MH2O (M⊕) ∆MXUV (M⊕)

K2-138

b 0.27± 0.02 0.000+0.007
−0.000 1.5 σ 0.132 <0.01 0.40

c 0.23± 0.02 0.13± 0.04 <1 σ <0.01 <0.01 <0.01
d 0.22± 0.03 0.17± 0.05 <1 σ <0.01 <0.01 <0.01
e 0.11± 0.02 0.57± 0.08 <1 σ <0.01 <0.01 <0.01
f 0.11± 0.02 0.60± 0.07 <1 σ <0.01 <0.01 <0.01
g 0.12± 0.05 0.55± 0.18 1.3 σ <0.01 <0.01 <0.01

TOI-178

b 0.21± 0.30 0 <1 σ 0.83 <0.01 0.45
c 0.30± 0.02 0.02+0.04

−0.02 <1 σ <0.01 <0.01 0.21
d 0.10± 0.01 0.69± 0.05 1.3 σ 0.16 <0.01 0.48
e 0.18± 0.02 0.40± 0.06 <1 σ <0.01 <0.01 0.13
f 0.22± 0.03 0.28± 0.10 <1 σ <0.01 <0.01 0.04
g 0.10± 0.01 0.58± 0.16 3.0 σ <0.01 <0.01 0.11

Kepler-11

b 0.20± 0.04 0.27± 0.10 <1 σ <0.01 <0.01 0.10
c 0.18± 0.01 0.33± 0.04 1.7 σ <0.01 <0.01 0.10
d 0.10± 0.02 0.65± 0.05 2.4 σ <0.01 <0.01 0.13
e 0.12± 0.01 0.55± 0.04 4.4 σ <0.01 <0.01 0.14
f 0.14± 0.06 0.47± 0.10 1.9 σ 0.56 <0.01 0.06

Kepler-102

b 0.91+0.09
−0.16 0 <1 σ 0.13 <0.01 0.03

c 0.95+0.05
−0.30 0 <1 σ 0.10 <0.01 0.03

d 0.80± 0.14 0 <1 σ <0.01 <0.01 0.03
e 0.22± 0.02 0.17± 0.07 <1 σ 0.01 <0.01 0.03
f 0.27± 0.09 0.04± 0.04 <1 σ 0.02 <0.01 0.01

Kepler-80

d 0.97 +0.03
−0.05 0 <1 σ <0.01 <0.01 0.35

e 0.43± 0.18 0 <1 σ <0.01 <0.01 0.29
b 0.13± 0.02 0.58± 0.07 <1 σ <0.01 <0.01 0.11
c 0.09± 0.01 0.70± 0.04 <1 σ <0.01 <0.01 0.13
g 0.31± 0.02 <1.5× 10−3 <1 σ 140 3.23 0.60

Notes. A low dobs-ret indicates that the assumption of a water-dominated atmosphere is adequate for a particular planet (see text). We note that
∆MH2, ∆MH2O, and ∆MXUV correspond to the maximum estimate of atmospheric escape mass loss due to H2, water Jeans escape, and XUV
photoevaporation, respectively.
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Table 5. Atmospheric parameters retrieved for the planets whose composition can accommodate a water-dominated atmosphere (see text).

Planet Tirr (K) T300 (K) zatm (km) AB

K2-138 b 1291 4110± 44 932± 151 0.213± 0.001
K2-138 c 1125 3900± 23 711± 103 0.214± 0.002
K2-138 d 978 3614± 56 635± 84 0.218± 0.002
K2-138 e 850 3383± 39 673± 90 0.231± 0.001
K2-138 f 735 3396± 116 1483± 546 0.260± 0.004
TOI-178 c 873 3344± 33 500± 60 0.226± 0.001
TOI-178 d 691 3254± 45 1181± 224 0.264± 0.004
TOI-178 e 600 2930± 31 690.7± 133 0.225± 0.018
TOI-178 f 521 2610± 23 368± 60 0.298± 0.007

Kepler-11 b 953 3697± 133 840± 313 0.221± 0.005
Kepler-102 e 694 2947± 29 360± 55 0.243± 0.004
Kepler-102 f 501 2784± 102 837± 290 0.347± 0.013
Kepler-80 b 750 3344± 33 1133± 148 0.253± 0.002
Kepler-80 c 679 3219± 29 1128± 114 0.266± 0.003

Notes. These parameters are the equilibrium temperature assuming a null albedo (Tirr), the atmospheric temperature at 300 bar (T300), the thickness
of the atmosphere from the 300 bar to 20 mbar (zatm), and the planetary Bond albedo (AB).
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Fig. 2. 1-σ confidence regions derived from the 2D posterior distri-
butions of the CMF and WMF obtained with the planetary interior
Bayesian analysis. Axes indicate the core mass fraction (CMF), water
mass fraction (WMF), and the mantle mass fraction (MMF). The latter
is defined as MMF = 1 - (CMF+WMF).

simultaneously indicate that a water-dominated atmosphere is
not inflated enough to account for the low density of the planet,
pointing to an atmosphere with more volatile gases, which are
probably H and He. Table 5 shows the irradiation tempera-
tures and the retrieved atmospheric parameters of the planets
whose density is compatible with the presence of a volatile layer
dominated by water.

5.1. K2-138

Figure 2 displays the 1σ confidence intervals derived from the
2D distributions of the WMF and CMF of the K2-138 in a
ternary diagram. We can see that the confidence regions are
aligned along a line almost parallel to the lines where the CMF
is constant. This alignment is due to the constraint on the Fe/Si
mole ratio we have considered within the whole planetary sys-
tem: the confidence regions are spread over the Fe/Si-isolines
whose constant values range from Fe/Si = 0.70 to 0.84 (see
Brugger et al. 2017, their Fig. 4).

For K2-138 b, the results set an upper limit of 0.7% in the
WMF, which means that this planet is unlikely to have a signifi-
cant amount of volatiles, including water. The retrieved planetary
radius is 1.538 R⊕, which is 1.5σ larger than the measured radius
from the analysis in Sect. 3. This is due to the extended atmo-
sphere necessary to produce temperature and pressure conditions
to hold supercritical water on the surface (Psurf > 300 bar). If
we assume a mass of 2.80 M⊕ and a CMF of 0.27, a vapour
atmosphere with a maximum surface pressure of 300 bar would
yield a WMF of 0.01% (WMF of Earth is 0.05%) and a radius
of 1.461 R⊕, which is well within the 1σ confidence interval of
the observed value. Therefore, we can conclude that K2-138
b is a volatile-poor planet, which might present a secondary
atmosphere with a low surface pressure (Psurf ≤ 300 bar) or no
atmosphere (WMF = 0). In addition, it is the planet with the high-
est CMF in the system, showing that planets in this system are
likely to have less massive cores than Earth (CMF = 0.325) and
the other terrestrial planets in the Solar System.

The atmospheric model also establishes a minimum surface
gravity of 2 m s−1 to retain an atmosphere. Unlike planets b, c,
d, and e, in which the 1-σ intervals on the masses exclude such
low surface gravity, this is not the case for planets f and g. For
planet f, a lower limit on the surface gravity of the planet can
be translated to a lower limit on the mass. If it is below this
limit, the gravity at the surface would not be enough to retain
an atmosphere. For planet f, with a total radius of 2.762 R⊕ and
a CMF of 0.11, this limit would be approximately 2 M⊕. This
minimum mass value to retain its atmosphere is above the lower
limit of the total mass set by its 1 σ uncertainties, as can be
seen in the upper panel of Fig. 3. Furthermore, planet f is the
most water-rich in the K2-138 planetary system, with an upper
limit of 66% in the WMF, which is close to the 77% maxi-
mum limit on the water content derived from measurements on
cometary compositions. Similarly, planet g also presents a lower
limit on the mass of the bulk of the planet of v2 M⊕ (see Fig. 3,
lower panel). Its retrieved planetary radius is significantly lower
than the observational value, with a difference of 1.3 σ. There-
fore, the atmosphere of K2-138 g is significantly more extended
than an atmosphere dominated by water vapour under the same
irradiance conditions. This increase in atmospheric thickness is
probably due to an atmosphere rich in H and He. K2-138 g could
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Fig. 3. Total mass and radius of K2-138 f (upper panel) and K2-
138 g (lower panel) from the different realisations of the MCMC (black
crosses). The solid blue lines show the mass and radius measurements
from PASTIS, and the dashed lines give the related uncertainties. The
red line indicates the limit below which the planet cannot maintain an
atmosphere.

have up to 5% of the volatile mass fraction assuming a H/He
atmosphere (see Fig. 1 in Lopez & Fortney 2014).

A rough estimate of Jeans mass loss rates for K2-
138 b yields 6× 10−7 M⊕.Gyr−1 for Jeans escape of H2, and
5× 10−84 M⊕.Gyr−1 for Jeans escape of H2O. For comparison,
in the case of Earth, the absence of H2 is due to an exobase (alti-
tude at which particles escape) temperature much higher than
the equilibrium temperature (Hedin 1983). An exobase temper-
ature 2 times higher than the equilibrium temperature gives a
mass-loss rate of 4× 10−2 M⊕.Gyr−1. In that case, an envelope
of 1–10% of the H-He mixture could be efficiently removed,
leaving only heavier species such as H2O. In the case of hydro-
dynamic escape, we obtained a mass loss rate of 2 M⊕.Gyr−1

during the saturation regime and 1× 10−2 M⊕.Gyr−1 at t = 3 Gyr.
This yields an integrated mass loss of 0.4 M⊕, or 14% of planet’s

b total mass. Comparing this value to the WMF derived for plan-
ets c and d from the MCMC in Table 4, we conclude that K2-138
b could have formed with a thick envelope of H2O that has been
blown away by XUV photoevaporation.

5.2. TOI-178

In the TOI-178 system, planets b and c have an increasing WMF
with a progressing distance from the star, while planets d to g
have a WMF equal or greater than 30%. For planets d and g, the
volatile layer is likely to present H/He, which would explain why
in our analysis their WMFs are in the 60–70% range in addition
to dobs-ret being greater than 1σ. TOI-178 b could have lost up to
0.83 M⊕ of its current mass in H2 due to Jeans escape, and up
0.45 M⊕ due to photoevaporation, while TOI-178 c could have
lost 0.21 M⊕. In such a scenario, the TOI-178 b and c original
volatile mass fraction would be up to 0.36 and 0.10, respectively,
compared to their current value.

5.3. Kepler-11

For Kepler-11, the WMF of the innermost planet is 0.27± 0.10,
which is compatible with a water-dominated envelope. For
Kepler-11 c to e, their radius data are 1.7σ, 2.4σ, and 4.4σ
higher than the radius we retrieved with our model, discarding
the water-rich envelope hypothesis. The increasing significance
level indicates that these planets have an increasing content of
H/He with distance from the star. In the case of the outermost
planet, Kepler-11 f, the retrieved radius is 1.9σ lower than the
data, suggesting that this planet presents less H/He than plan-
ets c to e. Nonetheless, this could be because of Kepler-11 f not
being able to retain a primordial atmosphere due to its low mass
(2.3+2.2

−1.2 M⊕), compared to the higher masses of the rest of the
planets in the system (>6 M⊕). Furthermore, Kepler-11 f could
have lost up to 0.56 M⊕ in H2, according to our atmospheric
Jeans escape calculation, whereas the other four planets in the
system have atmospheric mass losses below 2× 10−3 M⊕.

5.4. Kepler-102

The densities of the three innermost planets of Kepler-102
suggest that these are dry planets with high CMFs. Their core-
to-mantle ratios could be even higher than the CMF we would
expect from the Fe and Si stellar abundances of their host star.
Therefore, we set the WMF equal to zero in our MCMC Bayesian
analysis and let the CMF be the only free parameter. We only
took the mass and radius into account as observables. Our mod-
elling shows that Kepler-102 b, c, and d are dry Mercury-like
planets, with CMF = 0.91+0.09

−0.16, 0.95+0.05
−0.30, and 0.80± 0.14, respec-

tively. Their high CMF could be due to mantle evaporation
(Cameron 1985), impacts (Benz et al. 1988, 2007; Asphaug &
Reufer 2014), or planet formation in the vicinity of the rock-
lines (Aguichine et al. 2020; Scora et al. 2020). Kepler-102 e
presents a WMF of 0.17± 0.07, suggesting that this planet has
a more volatile-rich composition than the planets that precede
it. The large uncertainties in the mass of Kepler-102 f prevent
us from determining whether this is a bare rocky planet with
no atmosphere, or if it presents a thin atmosphere with a max-
imum WMF = 0.08. In addition, Jeans H2 atmospheric escape
could have removed up to 0.02 M⊕ from Kepler-102 f, yielding
an original volatile mass fraction between 0.07 and 0.10.

5.5. Kepler-80

Kepler-80 d presents a high CMF, corresponding to a Fe-rich
planet, similarly to Kepler-102 b and c. Kepler-80 e is consistent
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Fig. 4. Volatile mass fraction trends of the six multi-
planetary systems analysed with our interior-atmosphere
model. We show the water mass fraction estimates (see
text) as a function of the stellar incident flux or irradia-
tion, F, in Earth irradiation units (S ⊕ = 1361 W/m2) in the
upper panel. In the lower panel, the incident flux is nor-
malised with respect to the inner, most irradiated planet
in each system, Finnermost. The planets whose atmospheric
composition is likely to be H/He-dominated instead of
water-dominated (dobs-ret > 1 σ) are indicated in grey.

with a dry planet with an Earth-like CMF, whereas Kepler-80
b and c are volatile-dominated planets. Kepler-80 g shows a
WMF of up to 0.15%. Given its low mass M = 0.065+0.044

−0.038 M⊕
(MacDonald et al. 2021), planet g could not have retained a
H/He atmosphere, making a secondary atmosphere with water
and/or CO2 the most likely atmospheric composition for this
planet. Based on our MCMC interior-atmosphere analysis, this
atmosphere could be of less than 300 bar of surface pressure.
This scenario is also supported by our estimated Jeans water
escape, which is between 3.26× 10−3 M⊕ and 3.24 M⊕. Both
Jeans escape and XUV photoevaporation could have removed a
H/He envelope efficiently. The total atmospheric mass loss and
the current mass add up to a planetary mass that is similar to
that of Kepler-80 e, b, and c. Finally, the radius of Kepler-80 g
is 2.7 σ higher than the radius of a rocky planet with no atmo-
sphere, which suggests that Kepler-80 g probably has retained a
gaseous envelope.

6. Discussion

Figure 4 shows the volatile content of the five multi-planetary
systems we analysed in this work as a function of the incident

flux normalised with the incident flux received by the innermost
planet. In addition, we include in Fig. 4 the WMF of TRAPPIST-
1 derived with our interior-atmosphere model by Acuña et al.
(2021) for a homogeneous comparison. Of all systems, K2-138
presents a very clear volatile mass fraction trend: an increasing
gradient in water content with distance from the host star for
planets b to d, followed by a constant volatile mass fraction for
the outer planets (planets e to g). A similar trend is observed
in the TRAPPIST-1 system if one neglects TRAPPIST-1 d, pre-
senting a higher volatile mass fraction than its two surrounding
inner and outer planets in Fig. 4. In Acuña et al. (2021), the
WMF was obtained by assuming a condensed water layer. How-
ever, water could be in vapour phase and mixed with CO2 in
a CO2-dominated atmosphere, lowering the overall volatile mass
fraction of TRAPPIST-1 d. In that case, the TRAPPIST-1 system
could potentially show the increase-plus-plateau volatile trend
observed in K2-138. Transmission spectroscopy of TRAPPIST-
1 d is needed to probe the composition of its atmosphere. The
multi-planetary systems TOI-178 and Kepler-11 do not show
a smooth increases in the water mass fraction with orbital
distances, although the inner planets present significantly less
volatiles than the outer planets. Finally, Kepler-80 and Kepler-
102 could form this trend if it was not because of their outermost
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planet, which presents a lower volatile mass fraction than the
planet that immediately precedes it. In addition, the estimated
original volatile mass fraction of Kepler-102 f is well within the
uncertainties of the WMF of Kepler-102 e, meaning that planets
e and f could potentially form a plateau in the outer part of the
Kepler-102 system with a water mass fraction of 10%, similarly
to TRAPPIST-1.

In the case of TOI-178 and Kepler-11, it would be neces-
sary to adopt a self-consistent modelling approach that includes
the possibility of a H/He-dominated volatile layer to determine
whether their volatile mass fraction trend is as clear as that of
K2-138 and TRAPPIST-1. For the other multi-planetary sys-
tems, which do not present high dobs-ret combined with high water
mass fractions in our analysis, the volatile mass fraction would
decrease for each individual planet under the assumption of a
H/He envelope. Including H/He as part of the envelope would
change the value of the volatile mass fraction of each individual
planet, but it would not change our conclusion about the global
volatile mass fraction trends in each system (i.e. the gradient
and plateau trend in TRAPPIST-1 and K2-138). Furthermore, the
water-H/He degeneracy to which volatile-rich planets are subject
can only be broken with atmospheric characterisation data, such
as transmission spectroscopy and phase curves. In many cases,
the volatile envelope of sub-Neptunes might not be dominated
by either water or H/He, but it could be a mixture of both. This
is supported by transmission spectroscopy of the sub-Neptune
K2-18 b (Tsiaras et al. 2019; Benneke et al. 2019; Madhusudhan
et al. 2020), where water is detected; although its current trace
species could be compatible with a H2-rich atmosphere (Yu
et al. 2021). Additionally, meteorite outgassing experiments
show that a significant fraction of H/He could be sustained
in a water-dominated secondary atmosphere (Thompson et al.
2021).

The significant difference in the volatile mass fraction
between the inner planets and the outer planets of these multi-
planetary systems indicates that these planets might have under-
gone similar formation and evolution histories. The gradient-
plus-plateau trend could potentially result from the combination
of planetary formation in ice-rich regions of the protoplane-
tary disc, atmospheric loss, and inward migration. The outer
volatile-rich planets could have formed beyond the ice line prior
to migration, where ice-rich solids are expected to form (Mousis
et al. 2021), producing planets with high volatile contents. In
the systems whose planets present water mass fractions lower
than 10%, volatiles could have been simply delivered by build-
ing blocks made of chondritic minerals bearing this amount of
water (Melwani Daswani et al. 2021). In those conditions, the
radial drift of icy planetesimals from beyond the snowline is
not required. In the case of K2-138, the three-body Laplace res-
onances are a sign of inner planetary migration (Terquem &
Papaloizou 2007; Izidoro et al. 2017; Ramos et al. 2017). For
three systems, we found that their outermost planets (Kepler-11
f, Kepler-102 f, and Kepler-80 g) have lower volatile mass frac-
tions than the planets before them in the system. This could be
due to their lower masses compared to the other planets in their
systems, since they are not massive enough to have a surface
gravity that would help them retain their atmospheres. In addi-
tion, these three low-mass, low-WMF planets could have formed
further away from the water ice line than the water-rich planets
in their systems, having less water-rich material available during
accretion than those planets that formed in the vicinity of the
water ice line.

In contrast to K2-138, the water mass fractions of the outer
planets found in the TRAPPIST-1 and Kepler-102 systems are

compatible with 10% (Agol et al. 2021; Acuña et al. 2021), a
value found in agreement with the water content of many aster-
oids of the Main Belt (Vernazza et al. 2015). This similarity
suggests that the building blocks of the outer planets of these
systems could have agglomerated from a mixture of ice grains
coming from the snowline and anhydrous silicates that formed at
closer distances from the host star, following the classical forma-
tion scenarios invoked for the Main Belt (Rivkin et al. 2002). In
that case, this implies that the migration distances of the planets
in TRAPPIST-1 and Kepler-102 would have been more restricted
than those of the water-rich planets in the K2-138, TOI-178, and
Kepler-11 systems.

We have considered the Fe/Si mole ratio as an observable
of our MCMC Bayesian analysis in addition to the planetary
masses and radii. Even though the Fe/Si derived from stellar
abundances and that obtained from rocky planet densities could
depart from a 1:1 relationship (Plotnykov & Valencia 2020;
Adibekyan et al. 2021), considering the Fe/Si mole ratio con-
tributes to reducing the degeneracy between the rock+mantle
layers and the volatile layer (Dorn et al. 2015, 2017; Brugger et al.
2017). Particularly, assuming that the planetary Fe/Si mole ratio
is similar to the Fe/Si ratio of the host star improves the deter-
mination of the CMF, but it does not necessarily contribute to
the determination of the volatile mass fraction in volatile-rich
planets (Otegi et al. 2020). This is the case of the TRAPPIST-
1 system, where the inclusion of the Fe/Si mole ratio as an
observable in the MCMC Bayesian analysis refines the deter-
mination of the surface pressure for the inner planets of the
system, but slightly reduces the uncertainties of the WMF esti-
mates for the outer planets (see Tables 3 and 4 in Acuña et al.
2021). Therefore, considering the Fe/Si mole ratio does not affect
the volatile general trend of the planets within a multi-planetary
system.

7. Conclusions

We carried out a homogeneous interior modelling and compo-
sition analysis of five multiplanetary systems that have five or
more low-mass planets (M < 20 M⊕), rather than compiling the
volatile content estimates of previous works to eliminate the
differences between interior models as a possible bias when
comparing the compositional trends between planetary sys-
tems. In the case of the TOI-178, Kepler-11, Kepler-102, and
Kepler-80 systems, we used previously published mass, radius,
and stellar abundance data. In the case of the K2-138 system,
we completed the previous analysis with an in-depth stellar
spectroscopic analysis. We performed a line-by-line differential
analysis of K2-138 spectra with respect to α Cen B and the
Sun to derive the most accurate stellar parameters and abun-
dances given the available data. These were used for a new
complete Bayesian analysis of the radial velocities and photome-
try acquired for the system. We explored the robustness of the
planetary parameters and stellar chemical abundances in our
spectroscopic analysis. We concluded that the parameters we
derived are fully consistent with the ones obtained by Lopez et al.
(2019).

With our interior-atmosphere model in a MCMC frame-
work, we obtained the posterior distribution of the compositional
parameters (CMF and WMF) and the atmospheric parameters
assuming a water-dominated volatile layer of each of the plan-
ets in these multi-planetary systems. We found that K2-138
and TRAPPIST-1 present a very clear volatile trend with dis-
tance from the host star. Kepler-102 could potentially present
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this trend. For the TOI-178 and Kepler-11 systems, our mod-
elling ruled out the presence of a large hydrosphere being
responsible for their low density. For such systems, it would
be necessary to include H/He as part of the volatile layer in
a self-consistent interior-atmosphere model. Nonetheless, all
multi-planetary systems showed that the volatile mass fraction
is significantly lower for the inner planets than for the outer
planets. This is consistent with a formation history that involves
formation of the outer planets in the vicinity of the ice line,
inward migration, and atmospheric loss of the inner planets. We
discussed the possible formation and evolution pathways that
might yield these volatile content trends case by case. Simi-
larly, we also commented on the possible causes of the high
core mass fractions of the inner planets of Kepler-102 and
Kepler-80, which might involve formation in the vicinity of the
rocklines.

In addition, the atmospheric thickness that we obtained as
a result of our Bayesian analysis (see Table 5) can be used to
estimate the scale height of the extended atmospheres of the
planets analysed in this work, which is necessary to assess the
observing time and number of transits to characterise the com-
position of these atmospheres with transmission spectroscopy.
This would confirm the exact composition of their atmospheres.
To better assess possible evolutionary effects on the current com-
position of the planet, future work should involve the inclusion
of atmospheric mass loss processes in the coupled atmosphere-
interior model. In this work, we assumed that the planets do
not evolve with time. The variation in the water mass frac-
tion could also have been shaped by post-formation processes
such as hydrodynamic escape (Bonfanti et al. 2021). Each of
the discussed processes has been studied individually with inte-
rior models to constrain whether the atmospheres of low-mass
planets are primordial or secondary (Dorn & Heng 2018; Gupta
& Schlichting 2021), but none has modelled the effects of all
these combined processes on the volatile reservoir of low-mass
planets.
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Appendix A: System parameters

Table A.1. List of parameters used in the analysis. The priors are provided to-
gether with the posteriors. The posterior values represent the median and 68.3%
credible interval. Derived values that might be useful for follow-up work are also
reported.

Parameter Prior Posterior

Stellar Parameters

Effective temperature Teff [K] N(5275.0, 50.0) 5354.7+27.9
−21.2

Surface gravity log g [cgs] N(4.5, 0.11) 4.55+0.02
−0.02

Iron abundance [Fe/H] [dex] N(0.08, 0.05) 0.07 ± 0.05
Distance to Earth D [pc] N(201.54, 1.97) 201.5 ± 1.9
Interstellar extinction E(B − V) [mag] U(0.0, 1.0) 0.006+0.009

−0.005

Systemic radial velocity γ [km s−1] U(−10.0, 10.0) 0.6392+0.0012
−0.0013

Linear limb-darkening coefficient ua (derived) 0.4906+0.0075
−0.0071

Quadratic limb-darkening coefficient ub (derived) 0.2084+0.0045
−0.0047

Stellar density ρ?/ρ� (derived) 1.534+0.081
−0.090

Stellar mass M? [M�] (derived) 0.891+0.017
−0.027

Stellar radius R? [R�] (derived) 0.834+0.011
−0.01

Stellar age τ [Gyr] (derived) 3.3+2.4
−3.2

Planet b Parameters

Orbital Period Pb [d] N(2.35322, 0.01) 2.35308+0.00022
−0.00023

Transit epoch T0,b [BJD - 2450000] N(7773.317, 0.001) 7773.31682+0.00092
−0.00090

Radial velocity semi-amplitude Kb [km s−1] U(0.0, 0.1) 0.00146+0.00049
−0.00050

Orbital inclination ib [◦] S(70.0, 90.0) 87.9+1.3
−1.1

Planet-to-star radius ratio kb U(0.0, 1.0) 0.01586+0.00072
−0.00066

Orbital eccentricity eb T (0.0, 0.083, 0.0, 1.0) 0.047+0.050
−0.033

Argument of periastron ωb [◦] U(0.0, 360.0) 169+93
−109

System scale ab/R? (derived) 8.6+0.1
−0.2

Impact parameter bb (derived) 0.305+0.175
−0.191

Transit duration T14,b [h] (derived) 2.00+0.09
−0.11

Semi-major axis ab [AU] (derived) 0.03332+0.00021
−0.00034

Planet mass Mb [M⊕] (derived) 2.80+0.94
−0.96

Planet radius Rb [R⊕] (derived) 1.442+0.071
−0.063

Planet bulk density ρb [g cm−3] (derived) 5.1+2.0
−1.8

Planet c Parameters

Orbital Period Pc [d] N(3.55987, 0.01) 3.56004+0.00012
−0.00011

Transit epoch T0,c [BJD - 2450000] N(7740.3223, 0.001) 7740.32185+0.00087
−0.00090

Radial velocity semi-amplitude Kc [km s−1] U(0.0, 0.1) 0.00270+0.00052
−0.00051

Orbital inclination ic [◦] S(70.0, 90.0) 88.7+0.8
−0.7

Planet-to-star radius ratio kc U(0.0, 1.0) 0.02418+0.00056
−0.00051

Orbital eccentricity ec T (0.0, 0.083, 0.0, 1.0) 0.037+0.041
−0.025

Argument of periastron ωc [◦] U(0.0, 360.0) 171+129
−78

System scale ac/R? (derived) 11.3 ± 0.2
Impact parameter bc (derived) 0.254+0.148

−0.160

Transit duration T14,c [h] (derived) 2.37+0.05
−0.06

Semi-major axis ac [AU] (derived) 0.04391+0.00028
−0.00045

Planet mass Mc [M⊕] (derived) 5.95+1.17
−1.12

Planet radius Rc [R⊕] (derived) 2.198+0.066
−0.054

Planet bulk density ρc [g cm−3] (derived) 3.1+0.7
−0.6

Planet d Parameters
Continued on next page
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Parameter Prior Posterior
Orbital Period Pd [d] N(5.40478, 0.01) 5.40479 ± 0.00021
Transit epoch T0,d [BJD - 2450000] N(7743.1607, 0.001) 7743.15984+0.00095

−0.00093

Radial velocity semi-amplitude Kd [km s−1] U(0.0, 0.1) 0.00285 ± 0.00055
Orbital inclination id [◦] S(70.0, 90.0) 88.9+0.6

−0.5

Planet-to-star radius ratio kd U(0.0, 1.0) 0.02540+0.00069
−0.00065

Orbital eccentricity ed T (0.0, 0.083, 0.0, 1.0) 0.039+0.045
−0.027

Argument of periastron ωd [◦] U(0.0, 360.0) 207+69
−138

System scale ad/R? (derived) 15.0 ± 0.3
Impact parameter bd (derived) 0.297+0.145

−0.170

Transit duration T14,d [h] (derived) 2.71+0.07
−0.08

Semi-major axis ad [AU] (derived) 0.05800+0.00037
−0.00059

Planet mass Md [M⊕] (derived) 7.20+1.39
−1.40

Planet radius Rd [R⊕] (derived) 2.310+0.077
−0.068

Planet bulk density ρd [g cm−3] (derived) 3.2 ± 0.7

Planet e Parameters

Orbital Period Pe [d] N(8.26144, 0.01) 8.26146+0.00022
−0.00021

Transit epoch T0,e [BJD - 2450000] N(7740.6451, 0.001) 7740.64563+0.00085
−0.00087

Radial velocity semi-amplitude Ke [km s−1] U(0.0, 0.1) 0.00387+0.00094
−0.00093

Orbital inclination ie [◦] S(70.0, 90.0) 88.7+0.3
−0.2

Planet-to-star radius ratio ke U(0.0, 1.0) 0.03604+0.00074
−0.00072

Orbital eccentricity ee T (0.0, 0.083, 0.0, 1.0) 0.049+0.048
−0.034

Argument of periastron ωe [◦] U(0.0, 360.0) 223+67
−123

System scale ae/R? (derived) 19.8+0.3
−0.4

Impact parameter be (derived) 0.474+0.081
−0.115

Transit duration T14,e [h] (derived) 2.97 ± 0.05
Semi-major axis ae [AU] (derived) 0.07697+0.00050

−0.00079

Planet mass Me [M⊕] (derived) 11.28+2.78
−2.72

Planet radius Re [R⊕] (derived) 3.276+0.095
−0.082

Planet bulk density ρe [g cm−3] (derived) 1.8+0.5
−0.4

Planet f Parameters

Orbital Period P f [d] N(12.75759, 0.01) 12.75760+0.00051
−0.00048

Transit epoch T0, f [BJD - 2450000] N(7738.7019, 0.001) 7738.70226+0.00093
−0.00092

Radial velocity semi-amplitude K f [km s−1] U(0.0, 0.1) 0.00072+0.00091
−0.00052

Orbital inclination i f [◦] S(70.0, 90.0) 88.8+0.2
−0.1

Planet-to-star radius ratio k f U(0.0, 1.0) 0.03065+0.00085
−0.00083

Orbital eccentricity e f T (0.0, 0.083, 0.0, 1.0) 0.057+0.059
−0.040

Argument of periastron ω f [◦] U(0.0, 360.0) 172+117
−112

System scale a f /R? (derived) 26.5 ± 0.5
Impact parameter b f (derived) 0.541+0.073

−0.109

Transit duration T14, f [h] (derived) 3.20 ± 0.08
Semi-major axis a f [AU] (derived) 0.10283+0.00066

−0.00105

Planet mass M f [M⊕] (derived) 2.43+3.05
−1.75

Planet radius R f [R⊕] (derived) 2.787+0.093
−0.085

Planet bulk density ρ f [g cm−3] (derived) 0.6+0.8
−0.4

Planet g Parameters

Orbital Period Pg [d] N(41.97, 0.1) 41.96822+0.00817
−0.00774

Transit epoch T0,g [BJD - 2450000] N(7773.76, 2457773.93) 7773.86006+0.01931
−0.03522

Radial velocity semi-amplitude Kg [km s−1] U(0.0, 1.0) 0.00049+0.00058
−0.00035

Continued on next page
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Table A.1. – continued from previous page

Parameter Prior Posterior
Orbital inclination ig [◦] S(70.0, 90.0) 89.5+0.4

−0.3

Planet-to-star radius ratio kg U(0.0, 1.0) 0.03199+0.00327
−0.00248

Orbital eccentricity eg T (0.0, 0.083, 0.0, 1.0) 0.054+0.060
−0.038

Argument of periastron ωg [◦] U(0.0, 360.0) 164+148
−104

System scale ag/R? (derived) 58.6+1.0
−1.2

Impact parameter bg (derived) 0.550+0.319
−0.365

Transit duration T14,g [h] (derived) 4.71+0.79
−1.63

Semi-major axis ag [AU] (derived) 0.22745+0.00146
−0.00233

Planet mass Mg [M⊕] (derived) 2.45+2.92
−1.74

Planet radius Rg [R⊕] (derived) 2.911+0.305
−0.230

Planet bulk density ρg [g cm−3] (derived) 0.5+0.7
−0.4

Instrument-related Parameters

HARPS jitter σ j, RV [km s−1] U(0.0, 0.1) 0.00146+0.00068
−0.00077

K2 contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004
−0.002

K2 jitter σ j, K2 [ppm] U(0.0, 105) 185.9 ± 2.7
K2 out-of-transit flux U(0.99, 1.01) 1.0000058+0.0000037

−0.0000038

SED jitter [mag] U(0.0, 0.1) 0.02+0.017
−0.013

Notes:
• N(µ, σ2): Normal distribution with mean µ and width σ2

• U(a, b): Uniform distribution between a and b
• S(a, b): Sine distribution between a and b
• T (µ, σ2, a, b): Truncated normal distribution with mean µ and width σ2, between a and b
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A. First-author contributions – A.3. Interior-atmosphere modelling to assess the observability of
rocky planets with JWST (Acuña et al. Submitted)

A.3. Interior-atmosphere modelling to assess the
observability of rocky planets with JWST (Acuña et al.
Submitted)

L. Acuña, M. Deleuil, O. Mousis

This corresponds to the third first-author publication where I present the results of this thesis.
The version of the model I use in this work involves our own atmospheric model (see Chapter 4), and
the adaptive MCMC (see Sect. 5.2), in addition to the supercritical water layer in the interior model,
and the interior-atmosphere coupling employed in the previous two first-author publications (see
Sections A.1 and A.2).
The work corresponding to this publication has been presented in the following conferences:

• ’Celebrating JWST’s first six months of exoplanet data’, as a contributed talk, in November
2022, in Ringberg Castle, Kreuth (Germany)

• Europlanet Science Conference (EPSC) 2022, as a contributed talk, in September 2022, in
Granada (Spain)

• Semaine de la Astrophysique Française (SF2A) 2022, as a contributed talk, in June 2022, in
Besançon (France)
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ABSTRACT

Context. Super-Earths present compositions dominated by refractory materials. However, there is a degeneracy in their interior struc-
ture between a planet with no atmosphere and a small Fe content, and a planet with a thin atmosphere and a higher core mass fraction.
To break this degeneracy, atmospheric characterization observations are required.
Aims. We present a self-consistent interior-atmosphere model to constrain the volatile mass fraction, surface pressure, and temperature
of rocky planets with water and CO2 atmospheres. These parameters obtained in our analysis can then be used to predict observations
in emission spectroscopy and photometry with JWST, which can determine the presence of an atmosphere or its composition.
Methods. We couple a 1D interior model with a supercritical water layer with a non-grey atmospheric model. To obtain the bolometric
emission and Bond albedo for an atmosphere in radiative-convective equilibrium, we present the k-uncorrelated approximation for
fast computations within our retrieval on planetary mass, radius and host stellar abundances. For the generation of emission spectra,
we use our k-correlated atmospheric model. An adaptive MCMC is used for an efficient sampling of the parameter space at low
volatile mass fractions.
Results. We show how to use our modelling approach to predict observations with JWST for TRAPPIST-1 c and 55 Cancri e, which
have been proposed in Cycle 1. TRAPPIST-1 c’s most likely scenario is a bare surface, although the presence of an atmosphere
cannot be ruled out. If the emission in the MIRI F1500 filter is 731 ppm or higher, there would be a water-rich atmosphere. For fluxes
between 730 and 400 ppm, no atmosphere is present, while low emission fluxes (300 ppm) indicate a CO2-dominated atmosphere. In
the case of 55 Cancri e, a combined spectrum with NiRCam and MIRI LRS may present high uncertainties at wavelengths between 3
and 3.7 µm. There are no water or CO2 features in this range, so their identification in the emission spectrum is not affected by high
uncertainties.

Key words. Planets and satellites: atmospheres – Planets and satellites: interiors – Planets and satellites: composition – Planets and
satellites: individual: TRAPPIST-1 d – Planets and satellites: individual: 55 Cnc e – Methods: statistical – Methods: numerical

1. Introduction

Low-mass exoplanets (M < 20 M⊕) have two different sub-
populations based on their radius and density: super-Earths and
sub-Neptunes. Super-Earths have radii of R = 1.3 R⊕, while the
radius of sub-Neptunes corresponds to R = 2.4 R⊕ (Fulton et al.
2017; Fulton & Petigura 2018). If we compare these radii with
planet interior and evolution models, super-Earths are mostly
composed of Fe and Si-bearing rocks, whereas sub-Neptunes
have a significant volatile (H/He, water) content. Despite hav-
ing an idea of the main component for these planets from their
mass and radius data, and interior structure models, we do not
know their exact interior composition due to degeneracies.

In the case of super-Earths, we still have the question of
whether the planet could have a thin atmosphere, or if it presents
a bare rock surface. Atmospheres containing H/He are discarded,
since a very small fraction of H/He entails a minimum radius of
≃ 1.6 R⊕ (Lopez & Fortney 2014). Therefore, an atmosphere
composed of water formed from ice pebbles accreted beyond
or in the vicinity of the water ice line (Mousis et al. 2019;
Krissansen-Totton et al. 2021; Kimura & Ikoma 2022), a sec-
ondary atmosphere built-up by outgassing (Ortenzi et al. 2020;
Baumeister et al. 2021; Liggins et al. 2022), or a silicate at-

mosphere (Zahnle et al. 2009) are the most likely scenarios for
super-Earths. This produces a degeneracy in the internal struc-
ture of super-Earths and Earth-sized planets: the same planetary
mass and radius can be explained with a planet with no atmo-
sphere and a low-Fe content rocky bulk (Madhusudhan 2012;
Dorn et al. 2017), or a planet with a thin atmosphere and a core
mass fraction similar to that of Earth (32% of core mass frac-
tion).

This degeneracy in interior structure can only be broken with
the support of atmospheric characterization data. The presence
of an atmosphere has been confirmed in the hot super-Earth π
Mensae c, whose detection of C II ions indicates atmospheric
escape of a high-molecular atmosphere (García Muñoz et al.
2021). Phase curves have also been used to determine the ex-
istence of a silicate atmosphere in K2-141 b (Zieba et al. 2022),
as well as transmission spectroscopy for the terrestrial planet
LHS 3844 b (Diamond-Lowe et al. 2020). Moreover, Kreidberg
et al. (2019) use the phase curves to confirm the absence of an
atmosphere, as well as to constrain which material constitutes
the planetary surface.

JWST (Gardner et al. 2006) will observe several super-
Earths to confirm the presence of an atmosphere, or even nar-
row their possible atmospheric compositions. In this study, we
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present a self-consistent interior-atmosphere model, Marseille’s
Super-Earth Interior model (MSEI), to perform retrievals from
estimated mass, radius, and stellar host abundances. As a result,
we determine the posterior distribution functions (PDFs) of the
atmospheric mass, and surface pressure and temperature of wa-
ter and CO2-dominated atmospheres. These atmospheric param-
eters obtained from our retrieval analysis can be used as input
for an atmospheric model to produce spectra. We set an exam-
ple of this with our k-correlated atmospheric model, MSEIRAD-
TRAN, to generate emission spectra to predict observations with
JWST with MIRI photometric filters, and NirCam and MIRI
Low-Resolution Spectrometer (MIRI LRS). Combined interior
and atmospheric models have been used to constrain the water
mass fractions (WMF) of rocky planets as WMF < 10−3 (Agol
et al. 2021). However, the consistent exploration of the param-
eter space in the region close to WMF = 0 is necessary to ob-
tain the PDFs of the water mass fraction and the surface pres-
sure accurately. For this reason, we employ an adaptive Markov
chain Monte Carlo (MCMC) (Director et al. 2017) to explore the
low surface pressures for possible water and CO2 atmospheres in
rocky planets.

We recall the basics of our interior model, MSEI, in Sect. 2.
We explain the updates implemented in our atmosphere model,
MSEIRADTRAN, with respect to similar previous k-correlated
models (Marcq et al. 2017; Pluriel et al. 2019) in Sect. 3, as
well as introduce the non-grey, k-uncorrelated approximation for
fast computations of the bolometric flux and Bond albedo within
our MCMC framework. In Sect. 4, we detail the implementation
of the adaptive MCMC, and show and example of the retrieval
with it and a non-adaptive one. We assess the observability of
two planets that have been proposed for observations in Cycle 1
of JWST with our model: TRAPPIST-1 c (Gillon et al. 2016;
Grimm et al. 2018) and 55 Cancri e (Ehrenreich et al. 2012;
Bourrier et al. 2018). The planet and instrument parameters that
we use as input for our interior-atmospheric analyses and Pan-
dexo (Batalha et al. 2020) to predict uncertainties in JWST ob-
servations are summarised in Sect. 5. We present our results and
conclusions in Sect. 6 and Sect. 7, respectively.

2. Interior structure model

We remind the reader the fundamental principles on which our
interior structure model is based. The input of the interior struc-
ture model are the total mass and two compositional parameters,
which are the core mass fraction (CMF), and the water mass frac-
tion (WMF). The CMF and the WMF are defined as the mass of
the Fe-rich core and the hysdrosphere divided by the total plan-
etary mass, respectively. In the 1D interior model, the planetary
radius, r, is represented by a one-dimensional grid. Along this
grid, the pressure, P(r), the temperature, T (r), the gravity accel-
eration, g(r), and the density, ρ(r), are calculated at each point.
These four variables are obtained by solving the equation that
defines it. The pressure is computed by integrating the equation
of hydrostatic equilibrium (see Eq. 1), while the temperature re-
quires integrating the adiabatic gradient profile (Eq. 2). In Eq.
2, γ and ϕ correspond to the Grüneisen and seismic parameters,
respectively. The former describes the behaviour of the temper-
ature in a crystal to its density. The latter parameter provides the
speed at which seismic waves propagate in the same crystalline
structure. Their formal definitions are shown in Eq. 3, where we
can see that the seismic parameter is related to the slope of the
density at constant pressure, while the Grüneisen parameter de-
pends on the derivative of the pressure with respect to the inter-
nal energy, E. The acceleration of gravity is obtained by solving

the integral that results from Gauss’s theorem (Eq. 4), where G
is the gravitational constant, and m corresponds to the mass at a
given radius, r.

dP
dr
= −ρg (1)

dT
dr
= −g

γT
ϕ

(2)



ϕ =
dP
dρ

γ = V
(

dP
dE

)

V

(3)

dg
dr
= 4πGρ − 2Gm

r3 (4)

The density, ρ(r), is computed with the Equation of State
(EOS), which provides the density as a function of temperature
and pressure. The interior structure model is divided three sepa-
rate layers: a Fe-rich core, a mantle rich in silicates, and a water
layer. We use a different EOS to calculate the density for each of
these layers. We adopt the Vinet EOS (Vinet et al. 1989), with
a thermal correction, for the core and the mantle. More details
about this EOS and its reference parameter values for the core
and mantle can be found in Brugger et al. (2016, 2017). For
the hydrosphere, we use the EOS and specific internal energy
of Mazevet et al. (2019) for supercritical and plasma phases of
water, which is valid within the pressure and temperature regime
(P > 300 bar, T > 700 K) covered by our interior structure
model. We discuss the validity ranges of different water EOS for
this regime in Acuña et al. (2021), while a detailed comparison
of different EOS for high-pressure and high-temperature water
and its effects on the total radius of the planet can be found in
Aguichine et al. (2021).

The final input for our interior structure model are the surface
temperature and pressure. These are the boundary conditions,
together with the gravitational acceleration at the centre of the
planet, whose value is zero, g(r = 0) = 0. Finally, the mass of
each planetary layer is obtained by integrating the equation of
conservation of mass (Eq. 5). The total planetary mass is the sum
of the individual mass of the layers. When the total input mass
and the initial boundary conditions are met, the model reaches
convergence.

dm
dr
= 4πr2ρ (5)

2.1. Interior-atmosphere coupling

The surface pressure for the interior model depends on the mass
of the atmospheric mass on top of the outermost interface of the
interior model. For envelopes whose bottom pressure is greater
or equal to P = 300 bar, the interior model’s surface pressure is
set constant to 300 bar, which is the interface at which the inte-
rior and the atmosphere are coupled. Then the supercritical water
layer extends from this interface to the boundary between the hy-
drosphere and the silicate mantle at higher pressures. For atmo-
spheres whose surface pressure is less than 300 bar, the interior
and atmosphere are coupled at the atmosphere-mantle interface,
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having the water envelope in vapour phase only. The water mass
fraction takes into account the mass of the atmosphere, Matm.
The atmospheric mass is calculated as in Eq. 6, where Pbase is
the pressure at the base of the atmosphere (atmosphere-interior
interface), Rbulk is the radius comprised between the center of
the planet and the base of the atmosphere, and gsur f is the ac-
celeration of gravity at this interface. The coupling between the
interior and the atmosphere models at a maximum pressure of
300 bar is sufficiently close to the critical point (P = 220 bar) of
water to prevent the atmospheric model from taking over pres-
sures at which convection dominates over radiation.

Matm =
Pbase4πR2

bulk

gsur f
(6)

The atmospheric model calculates the outgoing longwave ra-
diation (OLR) and the Bond albedo, AB, given as a function of
bulk mass, radius and temperature at the bottom of the atmo-
sphere. If an atmosphere is in radiative equilibrium, its absorbed
flux, Fabs must be equal to its emitted radiation, which is the
OLR. The absorbed flux depends on the Bond albedo via Eqs.
7 and 8, where σ is the Stefan-Boltzmann constant, and Teq is
the planetary equilibrium temperature. This requires to know the
semi-major axis of the planet, ad, as well as the stellar radius and
effective temperature, R⋆ and T⋆, respectively.

Fabs = σ T 4
eq. (7)

Teq = (1 − AB)0.25
(
0.5

R⋆
ad

)0.5

T⋆, (8)

For a constant planetary mass and radius, we find the tem-
perature at the base of the atmosphere by solving OLR(Tbase) −
Fabs(Tbase) = 0 with a root-finding method, such as the bisec-
tion method. Then this is the input boundary condition for the
interior structure model. The radius calculated by the interior
structure model (from the centre of the planet up to the base of
the atmosphere) is an input for the atmospheric model, while
the temperature at the bottom of the atmosphere is an input for
both the interior and the atmospheric model. Therefore, the self-
consistent coupling of both models is not straightforward, and
requires an iterative algorithm that checks that convergence is
reached for the total radius and surface temperature. The total
radius are computed as the sum of the bulk radius calculated
by the interior model, and the atmospheric thickness obtained
by the atmospheric model. We refer the reader to Acuña et al.
(2021) for a detailed description of this algorithm.

3. Atmospheric model

The interior-atmosphere coupling presented in our previous
work (Mousis et al. 2020; Acuña et al. 2021; Acuña et al. 2022)
was done by using grids of data generated by the atmospheric
model of Pluriel et al. (2019). These grids provide the OLR,
Bond albedo and atmospheric thickness for a given set of mass,
radius and surface temperature assuming a constant surface pres-
sure. However, the use of these grids presents the following
disadvantage: the grids do not enable us to generate emission
spectra that could be used to simulate observations. Therefore,
we develop our own atmospheric model, MSEIRADTRAN. We
started the development of MSEIRADTRAN by modifying the

atmosphere model presented in Marcq et al. (2017)1 to include
up-to-date opacity and EOS data. In the following, we recall the
basic structure and principles of MSEIRADTRAN and the at-
mospheric models presented in Marcq et al. (2017); Pluriel et al.
(2019).

The 1D atmospheric model first proposes a pressure-
temperature (PT) profile. This profile consists of a near-surface,
dry convective layer, followed by a wet convective region where
condensation takes place, and a isothermal mesosphere on top. If
the surface temperature is cold enough to allow for condensation
of water, the dry troposphere will not exist. For the isothermal
mesosphere, we assume a constant temperature of 200 K (Marcq
2012; Marcq et al. 2017). The OLR is not very dependent on the
temperature of an upper mesosphere (Kasting 1988). In addition,
we do not take into account mesospheric stellar heating, which
could increase significantly the temperature of the mesosphere.
Therefore, adopting a low mesospheric temperature yields sim-
ilar thermal profiles to self-consistent atmospheric calculations
(Lupu et al. 2014). The one-dimensional grid that represents the
pressure contains 512 computational layers. The adiabatic gra-
dient used to calculate the temperature in each of these points
in the convective regions depends on whether it is located in the
dry or wet convective layer. The details of the computation of
the wet and dry adiabatic gradients are recalled in Sect. 3.1.

The calculations of the emission spectrum and the Bond
albedo are performed by bands. We divide the spectrum from 0
to 10100 cm−1 (equivalent to ≥ 1 µm in wavelength) in 36 bands
to obtain the OLR, similar to Pluriel et al. (2019). For each band,
we calculate the total optical depth in each computational layer,
which has four different contributions. These contributions are
the optical depth due to collision-induced absorption (CIA), and
line opacity (see Sect. 3.4), Rayleigh scattering, and clouds. We
treat Rayleigh scattering as in Pluriel et al. (2019), where the
Rayleigh scattering opacity is related to wavelength, λ, follow-
ing Eq. 9. The parameters κ0 and λ0 are adopted from Kopparapu
et al. (2013) and Sneep & Ubachs (2005) for H2O, and CO2,
respectively. The opacity of clouds is considered for the atmo-
spheric layers where condensation takes place. Similar to Marcq
et al. (2017) and Pluriel et al. (2019), the cloud opacity is pa-
rameterized after Kasting (1988), who assumes a cloud opacity
proportional to the extinction coefficient, Qext (see Eq. 10). The
dependence of the extinction coefficient on wavelength (Eq. 11)
is similar to that of water clouds on Earth (Kasting 1988; Marcq
et al. 2017).

κRayleigh(λ) = κ0
(
λ0

λ

)4

(9)

κclouds(λ) = 130 Qext(λ) (10)

Qext =

{
1 λ ≤ 20 µm
3.26 · λ−0.4 λ > 20 µm

(11)

The total optical depth (Eq. 12), together with the PT profile,
are the input for the radiative transfer equation solver, DISORT
(Stamnes et al. 2017). DISORT obtains the emitted upward flux
at the top of the atmosphere (TOA). The TOA flux is calculated
for all 36 bands, which are then summed to obtain the bolomet-
ric, wavelength-integrated TOA flux, or OLR. Immediately after

1 http://marcq.page.latmos.ipsl.fr/radconv1d.html
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the OLR is computed, we start the calculation of reflection spec-
tra and the Bond albedo, described in Sect. 3.5.

τtotal = τline + τRayleigh + τCIA + τclouds (12)

3.1. Atmospheric EOS

The thermal structure of the atmosphere is divided in two main
layers. The near-surface layer is adiabatic, which means convec-
tion takes place, while the layer on top is a mesosphere with con-
stant temperature. This is set to 200 K, which is representative of
the cool temperatures that hot low-mass planets present in their
mesospheres (Lupu et al. 2014; Leconte et al. 2013). The adia-
batic layer is divided in two sub-layers: a dry convective layer
and a wet convective one. Condensation may take place depend-
ing on the value of the pressure compared to the water satura-
tion pressure, because we assume an atmosphere with one con-
densable species, H2O, and one non-condensable gas, CO2. To
obtain the temperature in a computational layer, i, we consider
two approximations. The first one is that the change in temper-
ature and pressure within an atmospheric layer is small enough

to approximate
(
∂T
∂P

)

S
≃ Ti−1 − Ti

Pi−1 − Pi
. The second approximation

is ∆P ∼ Pi ∆ln(P), because
d ln(P)

dP
∼ ∆ln(P)
∆P

=
1
Pi

. Then the

temperature of a given computational layer, Ti can be calculated
as a function of the pressure in that layer, Pi, and the derivative
of the temperature with respect to pressure at constant entropy,
(∂T∂P)S , as seen in Eq. 13.

Ti = Ti−1 −
(
∂T
∂P

)

S
Pi ∆ln(Pi) (13)

If the pressure of water vapour is below the gas saturation
pressure, Pv < Psat(T ), or if its temperature is above the tem-
perature of the critical point of water, T > Tcrit, we are under
dry convection (Marcq 2012; Marcq et al. 2017). We calculate
the derivative (dT/dP)S in the dry case following Marcq et al.
(2017) (Eq. 14). ρv and ρc are the densities of water vapour
and CO2, respectively; and Cp,v and Cp,c, their heat capacities.
Vv = 1/ρv is the specific volume of water vapour.

(
∂T
∂P

)

S , dry
=
ρv T (∂Vv/∂T )P

ρv Cp,v + ρc Cp,c
(14)

When the atmospheric pressure reaches the water saturation
curve, P = Psat(T ), water vapour starts to condense out and
clouds form. Since the phase change requires energy in the form
of latent heat, the wet adiabatic coefficient is different from the
dry adiabatic one (Eq. 14). The expression for the derivative
(dT/dP)S in the wet case with CO2 as the only non-condensable
gas is provided in Eq. 15) (Marcq et al. 2017). Mc is the molecu-
lar weight of carbon dioxide, and Cv,c is the specific heat capac-
ity at constant volume of CO2. R is the ideal gas constant, while
αv is the mixing ratio of water vapour density relative to CO2,
αv = ρv/ρc. Its derivative, ∂ ln(αv)/∂ ln(T ) (Eq. 16), needs to
be calculated as well (Kasting 1988; Marcq 2012; Marcq et al.
2017).

(
∂T
∂P

)

S , wet
=

1
(dPsat/dT ) + ρcR/Mc(1 + ∂ ln(ρv)/∂ ln(T ) − ∂ ln(αv)/∂ ln(T ))

(15)

∂ ln(αv)
∂ ln(T )

=
R/Mc(∂ ln(ρv)/∂ ln(T )) −Cv,c − αv(∂sv/∂ ln(T ))

αv(sv − sc) + R/Mc

(16)

The density and heat capacity of water were previously ob-
tained by using the steam tables of Haar et al. (1984). These ta-
bles treat water as a non-ideal gas, although they are not valid for
T > 2500 K. Therefore, for temperatures higher than 2500 K, we
use the EOS tables from Haldemann et al. (2020) to calculate the
thermodynamic properties of water. These tables are a compila-
tion of different EOSs, where each EOS is applied in its valid-
ity region of the water phase diagram. There are two EOSs that
are used in the region relevant for the atmospheres of low-mass,
highly-irradiated planets. The first EOS is the IAPWS95 (Wag-
ner & Pruß 2002), whose validity range for the high-pressure
supercritical regime corresponds to 251 to 1273 K in tempera-
ture, and up to 1 GPa in pressure. Haldemann et al. (2020) tran-
sition to an EOS valid at low pressures and high temperatures
at 1200 K. This second EOS is the CEA (Chemical Equilibrium
with Applications) package (Gordon 1994; McBride 1996). This
package incorporates the effects of single ionisation and thermal
dissociation, which are processes that occur only at high temper-
atures in gas phase. Fig. 1 shows the dry adiabatic coefficient as
a function of pressure and temperature in the region of the water
phase diagram relevant for hot planetary atmospheres. The tem-
perature derivative (dT/dP)S is closely related to the adiabatic
coefficient, κad (Eq. 17). The reduction of the dry adiabatic co-
efficient at T = 1000 to 2500 K is due to thermal dissociation,
whereas the decrease at higher temperatures (T ≥ 6000 K) is
caused by thermal ionisation (Haldemann et al. 2020).

(
∂T
∂P

)

S
=

T
P
κad(P,T ) (17)
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Fig. 1: Dry adiabatic coefficient for water, κad, as a function of
pressure and temperature. The displayed region covers the cold
and hot gas phase of water up to pressures close to the critical
point.

We assume that CO2 is an ideal gas to calculate its density,
ρc. As we treat CO2 as an ideal gas, we can calculate its heat ca-
pacity Cv,c = Cp,c − R/Mc. We calculate the specific heat of CO2
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by using Shomate’s equation (Eq. 18), whose tabulated coeffi-
cients A to E are provided by Chase (1998). This is part of the
NIST (National Institute of Standards and Technology) chem-
istry webbook database2, and it is valid for temperatures up to
6000 K.

Cp,c(T ) = A + B T +C T 2 + D T 3 + E/T 2 (18)

Finally, we determine the atmospheric thickness, zatm under
the assumption of hydrostatic equilibrium (Eq. 1). In the case of
the atmospheric model, the pressure is integrated over altitude,
z, instead of internal radius, r. The altitude of the computational
atmospheric layer i is shown in Eq. 19, where ρtotal,i is the total
mass density at altitude zi, ρtotal,i = ρv,i + ρc,i. This expression
is derived by approximating (dP/dz) ∼ ∆P/zi−1 − zi. The final
atmospheric thickness is obtained by evaluating z at the transit
pressure, 20 mbar.

zi = zi−1 +
Pi ∆ln(P)
gi ρtotal,i

(19)

3.2. K-correlated method implementation

We employ the k-correlated method (Liou 1980) to compute the
emission spectrum. We discretize the dependence of the opac-
ity on wavenumber, ν, by dividing the spectrum in bands. The
spectral transmittance of a spectral band b, Tb, is defined as the
exponential sum of the opacity of the band, κb, times the column
density m, which is only dependent on pressure and tempera-
ture (Sanchez-Lavega 2011). The exponential sum is performed
over G-points, which are the abscissa values chosen to discretize
the cumulative probability function of the opacity, G(κ). Each G-
point, Gi, has an associated weight in the exponential sum in Eq.
20, wi. The discrete opacity value is not only dependent on the
spectral band, but also on the G-point, which is noted explicitly
in Eq. 20 as κbi . NG corresponds to the total number of G-points.

T b(m) =
∫ 1

0
e−κ

ν(G) m dG ≃
NG∑

i=1

e−κ
b
i m(P,T ) wi (20)

F↑TOA, b =

∫ 1

0
Fb(G) dG =

NG∑

i=1

Fb
Gi

wi (21)

In the case of an arbitrary set of G-points, the weights are
equal to wi = ∆Gi, which are the widths of the bins in G-space.
In each atmospheric layer, the pressure and temperature are con-
sidered constant. Under this condition and within each spectral
band, we can exchange wavenumber with G (Mollière 2017).
Consequently, we integrate the upward flux over G to obtain
the emitted flux within each band (Eq. 21). The upward top flux
per bin and per G-point, Fb

Gi
, is obtained by invoking the radia-

tive solver for a total optical depth whose line optical depth is
τline = τ

b
i (Eq. 22).

τb
i = κ

b
i ρ ∆z (22)

Following Malik et al. (2017, 2019), we define our discrete
G-points as the roots of the Legendre polynomial, GLG,i (Eq. 23).
2 https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&
Mask=1

The corresponding weigths, wi, are the Legendre-Gaussian (LG)
weights associated to the Legendre polynomial of NGth order,
PNG (Eq. 24). The LG weights are calculated from the ith root
of the NGth order Legendre polynomial, yi, as well as from the
polynomial’s derivative, P′NG

(Abramowitz & Stegun 1972; Ma-
lik et al. 2017). We choose to have NG = 16 G-points.

GLG,i =
(1 + yi)

2
(23)

wLG,i =
2(

1 − y2
i

)
P′NG

(yi)2
(24)

To generate emission spectra to assess the observability with
JWST, we use the original spectral resolution of the opacity k-
table data (see Sect. 3.4) in our k-correlated model, which cor-
responds to R = 200 to 300 in the spectral range λ = 1 to 20
µm.

3.3. K-uncorrelated approximation

The k-correlated method requires solving the radiative transfer
equation 16 times per band, with a different line optical depth
(see Eq. 22). The radiative transfer solver is the most compu-
tationally expensive subroutine in our 1D atmospheric model,
so we adopt a new approximation that we refer to as the k-
uncorrelated method, which require less calls to DISORT per
spectral bin. The difference between the uncorrelated-k and the
correlated-k methods is where the iteration over G-points oc-
curs. In the k-correlated method, the spectral lines are assumed
to be correlated from an atmospheric layer to the next one, mak-
ing it necessary to propagate the fluxes through the atmosphere
for all G-points before performing the integral in Eq. 20. In
the uncorrelated-k approach, the iteration over G-points ends
before inputting the optical depth to the RT solver. The final
line optical depth that is the input for the RT solver in the k-
uncorrelated method assumes that all the contributions from the
G-points are included before the sum in Eq. 20, being calculated
as τb = −ln(T b). Therefore, the radiative solver is invoked once
per spectral bin. This reduces the computation time of the emis-
sion flux in one spectral band from 0.40 seconds to 0.22 seconds.
In addition, we reduce the spectral resolution to R = λ/∆λ = 10
for the emission spectrum and Bond albedo, which is fast enough
to perform a high number of interior-atmosphere models in a re-
trieval analysis (see Sect. 4) within a few days.

We use the version of our atmospheric model with the
k-uncorrelated approximation to generate the OLR and Bond
albedo necessary to calculate the boundary conditions for the
interior model. To compare the effect of the k-uncorrelated ap-
proximation on the total radius of planets with water-rich en-
velopes, we compute two sets of mass-radius relationships (Fig.
2, upper panel). The first set is obtained by coupling the interior
model with our k-uncorrelated model (dotted lines), and the sec-
ond one with the k-correlated model of Pluriel et al. (2019). The
k-uncorrelated approximation causes differences of less than 1%
in radius compared to the k-correlated model of Pluriel et al.
(2019). This difference stems from the difference in the temper-
ature at the interior-atmosphere interface (P = 300 bar) between
MSEIRADTRAN and Pluriel et al. (2019). The difference in
temperature is between 200 to 230 K (Fig. 2, lower panel). Note
that the constant surface temperature at masses below 5 M⊕ in
the Pluriel et al. (2019) model are due to the limit in the data
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Fig. 2: Upper panel: Mass-radius relationships for a planet with a water-dominated atmosphere orbiting a Sun-like star at ad =
0.05 AU. Dashed lines indicate the total radius calculated by the k-uncorrelated version of MSEIRADTRAN, while the solid line
corresponds to the interior radius, which comprises the core, mantle, and supercritical water (SW). Triangles and circles indicate the
total radius and the interior radius obtained when the interior model is coupled with the atmospheric model of Pluriel et al. (2019),
respectively. Lower panel: Temperature at the 300 bar interface as a function of planetary mass.

grid we use, having no physical interpretation. In Fig. 3 we show
the OLR and Bond albedo as a function of bottom temperature
for our atmospheric model and that of Pluriel et al. (2019). The
trends of the Bond albedo are very similar for both models, ob-
taining a similar absorbed flux (dashed lines). Consequently, the
discrepancy in bottom temperature is caused by the difference in
OLR between the two models, which is approximately a factor
of 2.

We conclude that the k-uncorrelated MSEI may be used to
calculate the radius of water-rich planets within our MCMC re-
trieval framework, since fast computations of the OLR and Bond
albedo are necessary. The k-uncorrelated approach is an alterna-
tive to grey models, whose difference in OLR with k-correlated
models is greater than that obtained with the k-uncorrelated
model. However, the k-uncorrelated approximation should not
be used to compute spectra at higher resolution since the plane-
tary emission differs by a factor of 2 compared to a k-correlated
method. This entails a significant difference in predictions of the
emission spectrum for observations.

3.4. Opacity data

The total optical depth computed in the atmospheric model
include contributions from collision-induced absorption (CIA)

and line absorption. CIA absorption is particularly important in
dense gases, such as steam and CO2 at high pressures, specially
if the line opacity is weak (Pluriel et al. 2019). We adopt CIA ab-
sorption data for H2O-CO2 and H2O-H2O collisions provided by
Ma & Tipping (1992) and Tran et al. (2018)3, respectively. CO2-
CO2 CIA opacities are read from a look-up table obtained by
Bézard et al. (2011) and Marcq et al. (2008), which is also used
in the atmospheric model by Marcq et al. (2017). Our H2O-H2O
CIA table covers the complete spectral range where we calcu-
late both our emission and reflection spectra, while the H2O-CO2
CIA table covers the bands with wavelength ≥ 1 µm, which cor-
responds to the bands necessary for the emission spectrum only.
For the bands whose wavelength is outside the spectral range of
the CIA table, we assume a constant CIA opacity value equal to
the opacity at the limit band of the table.

Grimm & Heng (2015) provide a database4 of pre-calculated
opacity k-tables for different species and line lists. For water
and CO2-dominated atmospheres, we adopt the POKAZATEL
(Polyansky et al. 2018) and HITEMP2010 (Rothman et al. 2010)
opacity data, respectively. POKAZATEL presents the widest va-

3 https://www.lmd.jussieu.fr/~lmdz/planets/LMDZ.
GENERIC/datagcm/continuum_data/
4 https://chaldene.unibe.ch/data/Opacity3/
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Fig. 3: Outgoing Longwave Radiation (OLR, solid lines) and
absorbed flux (dashed lines) as a function of bottom atmo-
spheric temperature, calculated with our atmospheric model,
MSEIRADTRAN (red), and Pluriel et al. (2019) (blue). Dot-
ted lines indicate the temperature at which the OLR and the ab-
sorbed flux are equal, meaning the atmosphere is in radiative-
convective equilibrium.

lidity range in temperature for water in planetary atmospheres,
with a maximum temperature of 5000 K, while HITEMP maxi-
mum temperature is 4000 K. Following the procedure described
in Leconte (2021), we bin the k-correlated opacities to the same
spectral bins of Marcq et al. (2017) and Pluriel et al. (2019).
We calculate the k-coefficients for our water-CO2 mixture by as-
suming that the spectral features of the individual gases are cor-
related (Malik et al. 2017). In the correlated approximation, the
mixed opacity is estimated as indicated in Eq. 25, where χ j is
the mixing ratio by mass of the jth gas, κ j,i is the k-coefficient of
the jth gas evaluated at the Gi point. The mixing ratio by mass is

defined as χ j =
X j MW j

µ
, where X j =

P j

P
is the volume mixing

ratio of the jth species, MW j is its molecular weight, and µ is the
mean molecular weight of the mixture.

κmix,i =

Ngases∑

j=1

χ j κ j,i (25)

3.5. Reflection spectra and Bond albedo

Once the bolometric OLR is obtained, we initiate the calcula-
tion of the reflectivity in 30 bands, from 5 to 0.29 µm, to ob-
tain the Bond albedo (Pluriel et al. 2019). The bands for which
we calculate both the emission flux and the reflectivity (from 1
to 5 µm) cannot have the two quantities calculated simultane-
ously since DISORT requires different input settings to calcu-
late them. For the emission, we assume zero illumination from
the top of the atmosphere, as well as an upward flux that forms
90 degrees with the surface of the planet, which corresponds to
a polar angle equal to zero. To obtain the reflectivity, we as-
sume an isotropically-incident source of radiation at the top of
the atmosphere, while turning off all thermal emission sources
(Pluriel et al. 2019). DISORT calculates the reflectivity of the
atmosphere as a function of incident beam angle, which corre-
sponds to the solar zenith angle (SZA). The SZA, theta, is the
angle that the incident light forms with the normal of the inci-
dent surface. Once we obtain the dependence of the reflectivity

with SZA, we can average it as indicated in Eq. 26 (Simonelli &
Veverka 1988).

AB(ν) = 2
∫ π/2

0
AB(ν, θ) cos(θ) sin(θ) dθ (26)

After averaging the reflectivity over SZA, we obtain the re-
flection spectrum, which is the dependence of the albedo as a
function of wavenumber. To obtain the bolometric Bond albedo,
we integrate Eq. 27 (Pluriel et al. 2019). AB(ν) is the reflectivity
as a function of wavenumber, Bν(T⋆) is Planck’s function for a
temperature equal to the effective temperature of the host star,
and σ is the Stefan-Boltzmann constant.

ABond, bol =
π

∫ ∞
0 AB(ν) Bν(T⋆) dν

σT 4
⋆

(27)

The Bond albedo is a parameter particularly sensitive to the
choice of phase function. For atmospheric layers that present
clouds, the gas contributes to scattering with a Rayleigh phase
function, while we assume the Henyey-Greenstein phase funtion
for clouds. DISORT requires the calculation of the Legendre mo-
ments of the combined phase function, which we estimate as the
weighted average of the moments of the two individual phase
functions (Liou 1980; Boucher 1998). The weights are calcu-
lated as the ratio of the optical depth due to Rayleigh scattering
or clouds divided by the total optical depth, τRayleigh + τclouds,
for Rayleigh and Henyey-Greenstein phase function moments,
respectively. For clear atmospheric layers, the only contribution
to scattering is Rayleigh scattering due to the gas, so the total
phase function moment corresponds to that of Rayleigh scatter-
ing (Marcq et al. 2017).

DISORT also requires as input the single scattering albedo of
each atmospheric layer. The single scattering albedo is defined
as the ratio of scattering efficiency to total extinction effi- ciency.
The total extinction is a sum of both extinction by scattering and
extinction by absorption. Therefore, a single scattering albedo
of 1 indicates that all extinction is due to scattering, whereas a
value of zero means that absorption dominates. Similar to the
moments of the phase function, we estimate the combined sin-
gle scattering albedo from gas (Rayleigh) and clouds with their
weighted average. The single scattering albedo due to Rayleigh
scattering is calculated as the Rayleigh optical depth divided by
the total optical depth, τclear + τRayleigh. The clear optical depth is
the sum of the line and CIA optical depths (Sect. 3.4). The sin-
gle scattering albedo due to clouds is calculated as the ratio of
the clouds optical depth divided by τclear +τcloud, times the cloud
single scattering albedo defined in Kasting (1988):

ϖ0 =

{
1 λ ≤ 2 µm
1.24 · λ−0.32 λ > 2 µm

(28)

4. Markov chain Monte Carlo (MCMC)

We use the MCMC Bayesian algorithm described in Dorn et al.
(2015) and later adapted by Acuña et al. (2021) to our for-
ward interior-atmosphere model. We recall that the model pa-
rameters are the planetary mass, M, the CMF, xcore, and the
WMF, xH2O. Therefore, one single model is determined by these
three parameters as m = {M, xcore, xH2O}. The available data
are the total mass M, the total radius R, and the Fe/Si abun-
dance, d = {Mobs,Robs, Fe/S iobs}, whose observational errors
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are σ(Mobs), σ(Robs), σ(Fe/S iobs), respectively. When the Fe/Si
mole ratio is not considered in the inverse problem, the data
is reduced to only the total planetary mass and radius, d =
{Mobs,Robs}. The prior information consists on a Gaussian dis-
tribution centered on the mean value of the observed mass, with
a standard deviation equal to the observational uncertainty. For
the CMF and WMF, we consider as priors uniform distributions
ranging from 0 to 1. The MCMC scheme first starts by drawing
a value for each of the model parameters from their prior dis-
tributions, which we denote as m1 =

{
M1, xcore,1, xH2O,1

}
. The

interior model calculates the planetary radius and Fe/Si abun-
dance that corresponds to these model parameters, which is
g(m1) = {R1,M1, Fe/S i1}. The likelihood of this model is com-
puted (Eqs. 29 and 30) and a new model is drawn from the prior
distributions, m2.

L(mi | d) = C exp
(
−1

2

[(
(Ri − Robs)
σ(Robs)

)2

+

(
(Mi − Mobs)
σ(Mobs)

)2

+

(
(Fe/S ii − Fe/S iobs)
σ(Fe/S iobs)

)2])
, (29)

C =
1

(2π)3/2 [
σ2(Mobs) · σ2(Robs) · σ2(Fe/S iobs)

]1/2 (30)

The log-likelihoods, l(mi | d) = log(L(mi | d)), of both
models are used to estimate the acceptance probability (Eq. 31).
Consecutively, a random number is drawn from a uniform dis-
tribution between 0 and 1. If Paccept is greater than this random
number, m2 is accepted and the chain moves to this set of model
parameters, starting the following chain n + 1. Otherwise, the
chain remains in m1 and a different set of model parameters is
proposed, m3. The accepted models are stored, and values of
their parameters conform the PDF that will enable us to estimate
their mean and uncertainties.

Paccept = min
{
1, e(l(mnew,i |d)−l(mold |d))

}
(31)

4.1. Adaptive MCMC

In our initial implementation of the MCMC (Acuña et al. 2021),
the random walker uses a uniform distribution to choose the next
state where it is going to move in the parameter space of the CMF
and WMF. This is called a naive walk (Mosegaard & Tarantola
1995), in which all points in the parameter space have a probabil-
ity of being chosen proportional to their number of neighbours.
This poses the following problem: for the states whose CMF or
WMF are close to 0 or 1, they are less likely to be sampled in
the random walk, because they have less neighbours than the
central values. A model with WMF = 1 is not physical, although
many highly-irradiated rocky planets might present low-mass at-
mospheres, which correspond to a WMF close to 0. To compen-
sate the lower probability of being chosen in the limiting states
of the prior, we use an adaptive step size in the walker. This con-
sists on adapting the maximum size of the perturbation used to
generate a new model instead of using a fixed value everywhere
in the parameter space. This adaptive step size will decrease in
the limiting areas of the prior (i.e low WMF states) and have its
greatest value in the centre of the prior (WMF = 0.5). The self-
adjusting step size is carried by a transformation of the parame-
ter space, which ranges from exponential to spherical transforms

(Chaudhry et al. 2021). In this work, we choose to implement
the self-adjusting logit transform (SALT), proposed by Direc-
tor et al. (2017). The SALT transform is publicly available in
the SALTSampler R package5, which eases its implementation
in Python for our own model.

We compare the non-adaptive and adaptive MCMC for one
planet, TOI-220 b (Hoyer et al. 2021). We consider as input
data the total mass and radius, as well as the Fe/Si mole ratio,
which has been calculated with the stellar abundances of the
host star. No maximum limits have been established for the CMF
or the WMF. TOI-220 b has an equilibrium temperature of 806
K, which means that it is strongly irradiated and could present
steam and supercritical phases. Table 1 presents the input data,
and the retrieved parameters of the non-adaptive and adaptive
MCMCs. All three agree within uncertainties for mass, radius
and Fe/Si. The uncertainties of the mass and radius in the non-
adaptive MCMC are smaller than the input data. This difference
in uncertainties is significant in the case of the total mass. This
indicates that the non-adaptive MCMC is not as effective as the
adaptive MCMC at sampling all possible {xcore, xH2O} pairs that
could reproduce the mass and radius data. As a consequence, the
uncertainties of the WMF are being underestimated in the non-
adaptive MCMC, while the adaptive MCMC produces a greater
confidence interval for the WMF, and retrieves the exact uncer-
tainties of the mass and radius.

Data (Hoyer et al. 2021) Non-adaptive Adaptive
M [M⊕] 13.8±1.0 13.8±0.7 13.7±1.0
R [R⊕] 3.03±0.15 3.06±0.12 2.98±0.15
Fe/Si 0.65±0.09 0.64±0.11 0.64±0.10
xcore 0.08±0.03 0.09±0.03
xH2O 0.62±0.10 0.58±0.14

Table 1: TOI-220 b MCMC input (Data), and output mean values
and 1σ uncertainties for the non-adaptive and adaptive MCMCs.

In Fig. 4, we show the sampled 2D PDFs for the CMF and
the WMF in the ternary diagram. In addition to the same area of
the ternary diagram as the non-adaptive algorithm, the adaptive
MCMC explores an area at lower WMF along the Fe/Si = 0.65
isoline, going down to WMF = 0.10 in the driest simulations.
This is a consequence of the ability of the adaptive MCMC to
sample better the extremes of the prior distribution of the WMF,
in comparison to the non-adaptive MCMC. Furthermore, the ac-
ceptance rate is also improved in the adaptive case, having an
acceptance rate of 53% in comparison to the original acceptance
rate of 35% of the non-adaptive case within the same time.

5. Planetary and observation parameters

Our MCMC analysis requires as input the planetary mass, radius
and Fe/Si mole ratio for the two planets we consider as test-
case in this work, TRAPPIST-1 c and 55 Cancri e. Their values
and references are shown in Table 2. To determine the surface
temperature at which the atmosphere is in radiative-convective
equilibrium, the stellar effective temperature, stellar radius, and
semi-major axis are needed, as seen in Eq. 8. The values we
adopt and their references are given in Table 2.

To simulate the observations with JWST in photometry, we
assume the atmospheric parameters retrieved in our adaptive

5 https://rdrr.io/cran/SALTSampler/man/
SALTSampler-package.html
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Table 2: Planetary parameters for TRAPPIST-1 c and 55 Cancri e: masses, radii, Fe/Si mole ratios, semi-major axes, and host stellar
effective temperatures and radii.

M [M⊕] R [R⊕] Fe/Si ad [AU] T⋆ [K] R⋆ [R⊙] References

TRAPPIST-1 c 1.308±0.056 1.097+0.014
−0.012 0.76±0.12 1.58× 10−2 2566 0.119 1, 2

55 Cancri e 7.99+0.32
−0.33 1.875±0.029 0.60±0.14 1.54× 10−2 5172 0.943 3, 4

References. (1) Agol et al. (2021); (2) Unterborn et al. (2018); (3) Bourrier et al. (2018); (4) Luck (2016)
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Fig. 4: Sampled 2D PDFs of the CMF and WMF in the ternary
diagram for TOI-220 b for non-adaptive (red) and adaptive (blue)
MCMCs. The mean value of the input Fe/Si mole ratio is indi-
cated in a dashed black line.

MCMC analysis and generate emission spectra with their re-
spective temperature-pressure profiles. Consecutively, we bin the
emission spectrum using the response functions of each of the
MIRI photometry filters6 (Glasse et al. 2015; Piette et al. 2022).
The mean flux, ⟨ fλ⟩, of an emission spectrum, f (λ), observed
with a filter with transmission function R(λ), is defined in Eq. 32
(Stolker et al. 2020). We consider random Gaussian noise of 100
ppm for each filter to derive the uncertainties of the mean flux
(Lustig-Yaeger et al. 2019; Piette et al. 2022).

⟨ fλ⟩ =
∫

f (λ) R(λ) dλ
∫

R(λ) dλ
(32)

For the observation of the emission spectrum of 55 Cancri e,
we use Pandexo (Batalha et al. 2020) to simulate the expected
noise. Our input includes the stellar effective temperature, and
stellar and planet radius (see Table 2). Additional input param-
eters are found in the database accessible by Pandexo and Ex-
oMast, which are shown in Table 3. We adopt observation and
instrumentation variables from Hu et al. (2021). We adopt stel-
lar spectrum templates generated by petitRADTRANS (Mollière
et al. 2019) to calculate the planet-to-star flux ratio with our plan-
etary emission spectra.

Parameter Value
Star
Metallicity, log[Fe/H] 0.35
Gravity, log g [cgs] 4.43
J Magnitude 4.59
Planet
Transit duration [d] 0.0647
Observation
Baseline [h] 3.2
Number of eclipses 2
Instrument MIRI LRS NIRCam
Mode Slitless F444W, subgrism 64
Saturation limit [full well] 80%
Constant minimum noise 100 ppm

Table 3: Input parameters for Pandexo to simulate observations
of the emission spectrum of 55 Cancri e with JWST’s MIRI Low
Resolution Spectroscopy (LRS) and NIRCam instruments.

6. Interior composition and simulated spectra

6.1. TRAPPIST-1 c

TRAPPIST-1 c has been proposed to be observed in thermal
emission with the Mid-infrared instrument (MIRI) in JWST
Cycle 1 (Kreidberg et al. 2021). It will be observed with the
F1500W filter during 4 eclipses, which is the filter centered at λ
= 15 µm. We analyse TRAPPIST-1 c with our adaptive MCMC
with a water and a CO2-dominated atmosphere. Fig. 5 shows
the marginal posterior distributions (PDF) in 1D and 2D for
this analysis. The CMF agrees well with the value obtained pre-
viously with our non-adaptive MCMC in Acuña et al. (2021).
In contrast, the distribution of the WMF derived by the adap-
tive MCMC is wider than the non-adaptive one, with mean and
standard deviation values of WMFadap = (11.0±5.6)× 10−6, and
WMFnon−adap = (0.0+2.7

−0.0)× 10−6, respectively. This is because the
adaptive MCMC is more effective at exploring the corner re-
gion of the compositional parameter space, where the WMFs
are close to zero. More models in this region are accepted in
the posterior distribution, and therefore it becomes wider with
larger standard deviation than the non-adaptive posterior distri-
bution. The corresponding surface pressure derived by the adap-
tive MCMC is Psur f = 15±7 bar for a water-dominated envelope.
This 1σ confidence interval must be taken carefully since the
PDF of the surface pressure does not present a Gaussian distri-
bution shape.

A WMF of zero is also compatible with the density of
TRAPPIST-1 c. Consequently, we can conclude that TRAPPIST-
1 c could have a H2O atmosphere of up to ≃ 25 bar of sur-
face pressure, or no atmosphere at all. The analyses performed

6 http://svo2.cab.inta-csic.es/svo/theory/fps3/index.
php?id=JWST
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with the k-correlated atmospheric model and the k-uncorrelated
approximation agree that a H2O atmosphere in TRAPPIST-1 c
would have a surface temperature between 1000 and 1500 K,
and an atmospheric thickness of 150 to 250 km. The retrieved
Bond albedos differ by 0.05 due to the use of different atmo-
spheric opacity data.

For a CO2-dominated atmosphere, we retrieve a similar CMF
to the water case, although the volatile mass fraction increases by

one order of magnitude, VMF = (2.49±2.07)× 10−5. The molec-
ular weight of CO2 is higher than that of water vapour, producing
a more compressed atmosphere for a similar surface pressure and
temperature. In addition, the radiative properties (i.e opacity) of
CO2 yields a lower surface temperature for the same irradiation
conditions in comparison to a water-dominated envelope, which
contributes to a lower atmospheric thickness. As a consequence,
the models with a CO2 envelope can accommodate a more mas-
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sive atmosphere for TRAPPIST-1 c than the water models, re-
trieving a surface pressure of Psur f = 35±29 bar. The surface
temperature and atmospheric thickness are Tsur f = 807±102 K,
and zatm = 63±12 km, respectively.

We assume the atmospheric parameters retrieved in our
adaptive MCMC analysis and generate emission spectra with
their respective temperature-pressure profiles as explained in
Sect. 5. Fig. 6 shows the complete emission spectra and mean fil-
ter fluxes for TRAPPIST-1 c. We observe that for the nIR filters
(λ = 5.60 to 11.30 µm), both atmosphere models have very sim-
ilar fluxes that are compatible within uncertainties, which makes
it not possible to distinguish between the two compositions in
these wavelengths. For the filters F1500, F1800 and F2100, the
mean flux uncertainties of the water and the CO2 atmospheres
do not overlap, allowing the different compositions to be distin-
guished. Therefore, observing TRAPPIST-1 c in emission with
filter F1500, as proposed by Kreidberg et al. (2021), is well-
adapted to differentiate between a water or a CO2-dominated
atmosphere. We also consider the possibility of a bare surface
in TRAPPIST-1 c, given the high probability obtained in our
MCMC analysis for a volatile mass fraction equal to zero. Hu
et al. (2012) obtain the emission spectra of bare terrestrial sur-
faces for different minerals. We estimate the brightness temper-
ature for the irradiation conditions of TRAPPIST-1 c for two
minerals, a metal-rich surface and a granitoid one, since these
are the two surfaces with the highest and lowest emission for
the same irradiation conditions, respectively. We approximate
the emission spectrum of these surfaces to that of a black body
with a temperature equal to the estimated brightness tempera-
ture. The emission flux in the F1500 filter for a water atmosphere
is slightly higher than of the metal-rich surface. If TRAPPIST-1
c emission flux in this filter is 731 ppm or higher, it is indicative
of a thin, water-rich atmosphere. For very low emission fluxes
(≃ 300 ppm), TRAPPIST-1 c would present a CO2-dominated
atmosphere. For fluxes between 730 to 400 ppm, TRAPPIST-1 c
would have no atmosphere, with an emission that corresponds to
a bare surface. The surfaces with the lowest emission are grani-
toid, feldspathic, or clay (Hu et al. 2012).

6.2. 55 Cancri e

55 Cancri e is a super-Earth in a close orbit (P = 0.66 days)
to a bright star, for which several interior and atmospheric hy-
pothesis have been proposed. Madhusudhan (2012) explored a
carbon-rich interior given the high C/O ratio found for its host
star, showing that in this case the planetary bulk density would
be lower than that of a silicate-rich mantle planet, such as Earth.
They concluded that a volatile layer would not be necessary to
account for its density. On the other hand, a classical Fe-rich
core and a silicate mantle are compatible with a volatile envelope
rich in secondary atmosphere species. Furthermore, the absence
of a H/He-dominated envelope seems likely due to the lack of
hydrogen and helium emission and absorption lines in the spec-
trum (Ehrenreich et al. 2012; Zhang et al. 2021). The presence of
a secondary atmosphere is supported by phase curve data from
the Spitzer Space Telescope (Angelo & Hu 2017). A fully H2O-
dominated atmosphere has been discarded, since it will require
the presence of water and hydrogen simultaneously in the at-
mosphere due to water dissociation. Therefore, the most likely
composition for the atmosphere of 55 Cancri e is a mixture of
silicate compounds (Keles et al. 2022), such as HCN, detected
by Tsiaras et al. (2016), with traces of water (detected by Es-
teves et al. 2017), or CO2. Despite the water and CO2-dominated
atmospheres being discarded by the current data, it is still inter-

esting to carry out our interior-atmosphere analysis for 55 Cancri
e, since the scale height of a silicate high-molecular weight at-
mosphere might be similar to that of an envelope with the two
compositions we consider. The scale height influences, together
with the abundances, the intensity of a line in the spectrum of an
exoplanet.

Hu et al. (2021) have proposed to observe 55 Cancri e in
emission spectroscopy combining NIRCam F444W filter (3-5
µm), and MIRI’s Low Resolution Spectrograph (MIRI LRS; 5-
14 µm). In Table 4, we observe that a water-dominated atmo-
sphere reproduces well the observed data, with a surface pressure
higher than 200 bar, whereas the CO2 envelope is not extended
enough to match the density of 55 Cancri e, yielding a more
dense interior. At temperatures higher than 4000 K, CO2 would
not be the dominant species in a C-rich atmosphere, but CO. This
changes the emission of the atmosphere as CO is a different ab-
sorber from CO2. A CO-rich atmosphere could also explain the
low-density of 55 Cancri e in this scenario, since CO has a lower
molecular weight than CO2, yielding a larger atmospheric scale
height. When H/He is not included in the interior modelling, wa-
ter as a trace species is necessary to explain the low density of
55 Cancri e, since a purely dry silicate atmosphere will have a
smaller thickness than a CO2 atmosphere due to their heavier
molecular weights under similar atmospheric surface conditions.
Adding silicate absorbers decreases the total planetary radius in
H/He envelopes (Misener & Schlichting 2022). However, more
modelling work is necessary to explore the effect of silicates in
atmospheres that have lost their primordial H/He. A planet with
no volatiles could match the low planetary density if the core and
the mantle where less dense than that of an Earth-like interior,
pointing to a carbon-rich mantle as suggested by Madhusudhan
(2012). The emission spectrum in this scenario would be that of
a bare surface, requiring terrestrial surface models such as the
ones presented in Hu et al. (2012).
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Fig. 7: Predicted emission spectrum with the k-correlated, high-
resolution MSEIRADTRAN model for a water-rich atmosphere
in 55 Cancri e with NIRCam and MIRI LRS.

Fig. 7 shows the complete predicted emission spectrum of 55
Cancri e from 3 to 14 µm. We notice that for wavelengths below
≃ 3.7 µm the noise is quite high, although in the range λ = 3 to
3.7 µm there are no water or CO2 spectral lines. Nonetheless, the
rest of the spectral coverage of the proposed observations have
low noise level, which makes the spectral features of water easy
to identify with JWST in the high-molecular weight atmosphere
scenario of 55 Cancri e.
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Data H2O CO2

M [M⊕] 7.99+0.32
−0.33 7.99+0.29

−0.32 8.17±0.29
R [R⊕] 1.875±0.029 1.877±0.020 1.850±0.021
Fe/Si 0.60±0.14 0.62±0.14 0.48±0.13
CMF 0.20±0.05 0.15±0.05
VMF (6.7+7.4

−5.9) × 10−5 (5.1+5.9
−4.6) × 10−5

Psur f [bar] 209±93 > 300
Tsur f [K] 4161±199 4035±597 (at 300 bar)
zatm [km] 522±46 152±33 (from 300 bar)

Bond albedo 0.191±0.001 0.351±0.004

Table 4: MCMC retrieved mean value and 1σ uncertainties for observable (mass, radius and Fe/Si mole ratio), compositional (core
and volatile mass fractions) and atmospheric (surface pressure and temperature, atmospheric thickness and Bond albedo) parameters
of 55 Cancri e.

7. Conclusions

In this work, we present a self-consistent model built to es-
timate the internal compositions and structures of low-mass
planets with water and CO2 atmospheres given their observed
mass, radius, and their host stellar abundances. We couple self-
consistently the interior and the atmosphere to obtain the bound-
ary conditions at the top of a supercritical water layer or a silicate
mantle given the irradiation conditions of the planet. This is done
by calculating the bolometric emission flux and the Bond albedo,
to compute the flux emitted and absorbed by an atmosphere in
radiative-convective equilibrium. For fast computations of the
radiative quantities within our MCMC retrieval approach, we
present the k-uncorrelated approximation. This is as fast as grey
models, but does not underestimate the outgoing longwave ra-
diation as much as these compared to a k-correlated model. We
show that the k-uncorrelated approximation presents sufficient
accuracy to obtain the radius of an irradiated water planet within
a 1% error with k-correlated models. This error increases with
higher water mass fraction (WMF > 70%) and lower planetary
mass. We also demonstrate that using a constant step size when
sampling the prior distribution in a MCMC scheme is not effi-
cient in exploring the parameter space in interior modelling. This
causes an underestimation of the uncertainties of the composi-
tional parameters. Therefore, it is necessary to use an adaptive
MCMC when performing retrieval with interior models, espe-
cially for planets whose compositional parameters can reach the
maximum or minimum possible values. This is the case of rocky
Earth-sized planets and super-Earths, whose WMFs are close to
zero, but are nonetheless important to determine their surface
pressure.

Moreover, we use the surface pressure and temperature con-
ditions retrieved with our interior-atmosphere model to gener-
ate emission spectra with our k-correlated atmospheric model,
MSEIRADTRAN. We showcase how to use interior and atmo-
spheric modelling simultaneously to predict observations for two
rocky planets, TRAPPIST-1 c and 55 Cancri e, which have been
proposed for observations in emission photometry and spec-
troscopy with JWST. We bin our emission spectra according to
the response functions of the MIRI filters to predict emission
fluxes for TRAPPIST-1 c for different scenarios, while for 55
Cancri e we input our emission spectra to Pandexo to predict
observational uncertainties.

The most likely scenario for TRAPPIST-1 c is the lack
of an atmosphere (WMF = 0). Nonetheless, the presence of
a secondary atmosphere cannot be ruled out. In this scenario,
TRAPPIST-1 c could have a H2O-dominated atmosphere of up
to 25 bar of surface pressure. A CO2-rich envelope would have

higher surface pressures, and therefore it would be more massive
than the water case, with a maximum surface pressure of 64 bar.
We present emission flux estimates for the filter centered at 15
µm, F1500, that can be compared with observations by Kreid-
berg et al. (2021) to determine if TRAPPIST-1 c has a bare sur-
face. For 55 Cancri e, a massive envelope with more than 300 bar
of surface pressure that contains water is necessary to fit its low
density. We determine that a combined spectrum with NirCam
and MIRI LRS, as proposed by Hu et al. (2021), may present a
high noise level at wavelengths between 3 and 3.7 µm. However,
this part of the spectrum does not contain any spectral lines of
water or CO2, which are essential to determine the abundances
in the envelope.

In our modelling approach, we have considered pure wa-
ter and CO2 envelopes. However, the atmospheres of low-mass
planets are more diverse than these two compositional scenar-
ios. The atmospheric compositions of sub-Neptunes are proving
to be a mixture of H/He, water and other compounds via ob-
servations and models (Madhusudhan et al. 2020; Bézard et al.
2020; Guzmán-Mesa et al. 2022), while super-Earths can have
more exotic atmospheric compositions, such as mineral atmo-
spheres (Keles et al. 2022). Therefore, the scope of future work
will be to include more gases in the atmospheric model, as well
as the calculation of transmission spectra in addition to the ex-
isting implementation of emission and reflection spectra. Our
interior-atmosphere model, MSEI, serves as a precedent to de-
velop models with more diverse envelope compositions to pre-
pare proposals for JWST and future atmospheric characteriza-
tion facilities, such as Ariel (Tinetti et al. 2018). Our model can
also be used within retrieval frameworks to interpret mass, ra-
dius and upcoming JWST emission spectral data simultaneously
to break degeneracies in exoplanet composition.
Acknowledgements. M.D. and O.M. acknowledge support from CNES.
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Planetary system LHS 1140 revisited with ESPRESSO and
TESS (Lillo-Box et al. 2020)
J. Lillo-Box, P. Figueira, A. Leleu, L. Acuña, J. P. Faria, N. Hara, N. C. Santos, A. C. M. Correia, P.
Robutel, M. Deleuil, D. Barrado, S. Sousa, X. Bonfils, O. Mousis, J. M. Almenara, N. Astudillo-Defru, E.
Marcq, S. Udry, C. Lovis, and F. Pepe

The modelling of LHS 1140 b was done with the version of the model described in Brugger et al.
(2017) and Sect. 2.1, since this planet is found in the habitable zone and it could sustain liquid water.
To retrieve its CMF and WMF, I embedded this version of the model into the MCMC algorithm (see
Sect 5.1). For the innermost planet, LHS 1140 c, the mass-radius relationships in Fig. 16 of this
publication were derived with the coupled interior-atmosphere model. In this case, I used the grids
with atmospheric data generated with the model from Pluriel et al. (2019), as explained in Sect. 3.1.

TOI-220 b: a warm sub-Neptune discovered by TESS (Hoyer
et al. 2021)
S. Hoyer, D. Gandolfi, D. J. Armstrong, M. Deleuil, L. Acuña, J. R. de Medeiros, E. Goffo, J. Lillo-Box,
E. Delgado Mena, T. A. Lopez, A. Santerne, S. Sousa, M. Fridlund, V. Adibekyan, K. A. Collins, L. M.
Serrano, P. Cortés-Zuleta, S. B. Howell, H. Deeg, A. Aguichine, O. Barragán, E. M. Bryant, B. L. Canto
Martins, K. I. Collins, B. F. Cooke, R. F. Díaz, M. Esposito, E. Furlan, S. Hojjatpanah, J. Jackman, J. M.
Jenkins, E. L. N. Jensen, D. W. Latham, I. C. Leão, R. A. Matson, L. D. Nielsen, A. Osborn, J. F. Otegi,
F. Rodler, S. Sabotta, N. J. Scott, S. Seager, C. Stockdale, P. A. Strøm, R. Vanderspek, V. Van Eylen, P. J.
Wheatley, J. N. Winn, J. M. Almenara, D. Barrado, S. C. C. Barros, D. Bayliss, F. Bouchy, P. T. Boyd, J.
Cabrera, W. D. Cochran, O. Demangeon, J. P. Doty, X. Dumusque, P. Figueira, W. Fong, S. Grziwa, A. P.
Hatzes, P. Kabáth, E. Knudstrup, J. Korth, J. H. Livingston, R. Luque, O. Mousis, S. E. Mullally, H. P.
Osborn, E. Pallé, C. M. Persson, S. Redfield, N. C. Santos, J. Smith, J. Šubjak, J. D. Twicken, S. Udry,
and D. A. Yahalomi

TOI-220 b is highly irradiated, so in this publication, I used the coupled interior-atmosphere
model within the non-adaptive MCMC method to retrieve the planetary composition. In the
interior-atmosphere coupling, I used the grids of atmospheric data produced with the atmospheric
model of Pluriel et al. (2019).

The results of this publication were also presented as a poster in the TESS Science conference II,
in August 2021 (virtual).
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TOI-2196 b: Rare planet in the hot Neptune desert transiting
a G-type star (Persson et al. 2022)
C. M. Persson, I. Y. Georgieva, D. Gandolfi, L. Acuña, A. Aguichine, A. Muresan, E. Guenther, J. Liv-
ingston, K. A. Collins, M. Fridlund, E. Goffo, J. S. Jenkins, P. Kabáth, J. Korth, A. M. Levine, L. M.
Serrano, J. Vines, O. Barragán, I. Carleo, K. D. Colon, W. D. Cochran, J. L. Christiansen, H. J. Deeg, M.
Deleuil, D. Dragomir, M. Esposito, T. Gan, S. Grziwa, A. P. Hatzes, K. Hesse, K. Horne, J. M. Jenkins, J. F.
Kielkopf, P. Klagyivik, K. W. F. Lam, D. W. Latham, R. Luque, J. Orell-Miquel, A. Mortier, O. Mousis, N.
Narita, H. L. M. Osborne, E. Pallé, R. Papini, G. R. Ricker, H. Schmerling, S. Seager, K. G. Stassun, V.
Van Eylen, R. Vanderspek, G. Wang, J. N. Winn, B. Wohler, R. Zambelli, and C. Ziegler

TOI-2196 b is too inflated to have a water-rich atmosphere, so I modelled this particular case with
our preliminary H/He model. This model was built by combining our interior’s core and mantle
with the mass-radius relationships for H/He envelopes from Zeng et al. (2019), as described in Sect.
6.3. The version employed in this publication of the MCMC method is the adaptative one (see Sect.
5.2).

Characterization of the HD 108236 system with CHEOPS
and TESS. Confirmation of a fifth transiting planet. (Hoyer
et al. 2022)
S. Hoyer, A. Bonfanti, A. Leleu, L. Acuña, L. M. Serrano, M. Deleuil, A. Bekkelien, C. Broeg, H. G. Florén,
D. Quelo, T. G. Wilson, S. G. Sousa, M. J. Hooton, V. Adibekyan, Y. Alibert, R. Alonso, G. Anglada, J.
Asquier, T. Bárczy, D. Barrado, S. C. C. Barros, W. Baumjohann, M. Beck, T. Beck, W. Benz, N. Billot,
F. Biondi, X. Bonfils, A. Brandeker, J. Cabrera, S. Charnoz, A. Collier Cameron, Sz. Csizmadia, M. B.
Davies, L. Delrez, O. D. S. Demangeon, B.-O. Demory, D. Ehrenreich, A. Erikson, A. Fortier, L. Fossati,
M. Fridlund, D. Gandolfi, M. Gillon, M. Güdel, N. Hara, K. Heng, K. G. Isaak, J. M. Jenkins, L. L. Kiss,
J. Laskar, D. W. Latham, A. Lecavelier des Etangs, M. Lendl, C. Lovis, A. Luntzer, D. Magrin, P. F. L.
Maxted, V. Nascimbeni, G. Olofsson, R. Ottensamer, I. Pagano, E. Pallé, C. M. Persson, G. Peter, D.
Piazza, G. Piotto, D. Pollacco, R. Ragazzoni, N. Rando, H. Rauer, I. Ribas, G. R. Ricker, S. Salmon, N. C.
Santos, G. Scandariato, S. Seager, D. Ségransan, A. E. Simon, A. M. S. Smith, M. Steller, Gy. M. Szabó,
N. Thomas, J. D. Twicken, S. Udry, V. Van Grootel, R. K. Vanderspek, N. A. Walton, K. Westerdorff, J. N.
Winn

The mass-radius relationships shown in Fig. 9 of this publication were computed with the same
version of the interior-atmosphere model used in Appendix A.1. This means that the interior was
coupled with the atmosphere by using the grids with atmospheric data (Pluriel et al. 2019). This
version of the model is combined with the non-adaptive version of the MCMC to retrieve the core
and water mass fractions of HD 108236 b and c.
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HD207897 b: A dense sub-Neptune transiting a nearby and
bright K-type star (Heidari et al. 2022)
N. Heidari, I. Boisse, J. Orell-Miquel, G. Hébrard, L. Acuña, N. C. Hara, J. Lillo-Box, J. D. Eastman, L.
Arnold, N. Astudillo-Defru, V. Adibekyan, A. Bieryla, X. Bonfils, F. Bouchy, T. Barclay, C. E. Brasseur, S.
Borgniet, V. Bourrier, L. Buchhave, A. Behmard, C. Beard, N. M .Batalha, B.Courcol, P. Cortés-Zuleta,
K. Collins, A. Carmona, I. J. M. Crossfield, A. Chontos, X. Delfosse, S. Dalal, M. Deleuil, O. D. S.
Demangeon, R. F. Díaz, X. Dumusque, T. Daylan, D. Dragomir, E. Delgado Mena, C. Dressing, F. Dai, P.
A. Dalba, D. Ehrenreich, T. Forveille, B. Fulton, T. Fetherolf, G. Gaisné, S. Giacalone, N. Riazi, S. Hoyer,
M. J. Hobson, A. W. Howard, D. Huber, M. L. Hill, L. A. Hirsch, H. Isaacson, J. Jenkins, S. R. Kane, F.
Kiefer, R. Luque, D. W. Latham, J. Lubin, T. Lopez, O. Mousis, C. Moutou, G. Montagnier, L. Mignon, A.
Mayo, T. Močnik, J. M. A. Murphy, E. Pallé, F. Pepe, E. A. Petigura, J. Rey, G. Ricker, P. Robertson, A. Roy,
R. A. Rubenzahl, L. J. Rosenthal, A. Santerne, N. C. Santos, S. G. Sousa, K. G. Stassun, M. Stalport, N.
Scarsdale, P. A. Strøm, S. Seager, D. Segransan, P. Tenenbaum, R. Tronsgaard, S. Udry, R. Vanderspek,
F. Vakili, J. Winn, and L. M. Weiss

In this work, I combined the non-adaptive version of the MCMC method with the interior-
atmosphere model to retrieve the composition of HD 207897 b. In the coupling between the interior
and the atmosphere, I used the grids of atmospheric data provided by the atmospheric model of
Pluriel et al. (2019).

Masses for the seven planets in K2-32 and K2-233. Four
diverse planets in resonant chain and the first young rocky
worlds (Lillo-Box et al. 2020)
J. Lillo-Box, T. A. Lopez, A. Santerne, L. D. Nielsen, S. C. C. Barros, M. Deleuil, L. Acuña, O. Mousis,
S. G. Sousa, V. Adibekyan, D. J. Armstrong, D. Barrado, D. Bayliss, D. J. A. Brown, X. Dumusque, P.
Figueira, S. Hojjatpanah , H. P. Osborn, N. C. Santos, O. D. S. Demangeon, and S. Udry

In this work, I compared the masses and radii of the three planets with mass-radius relationships
provided by Mousis et al. (2020), and I concluded that they were likely to be dry, rocky super-Earths.
I combined the version of the interior model detailed in Sect. 2.1 and Brugger et al. (2017) with the
non-adaptive MCMC algorithm to estimate the core mass fractions with uncertainties for K2-32 e,
and K2-233 b and c. The water mass fraction was held constant and equal to zero.

A Reanalysis of the Composition of K2-106b: an Ultra-short
Period Super-Mercury Candidate (Rodríguez Martínez et al.
2022)
R. Rodríguez Martínez, B. S. Gaudi, J. G. Schulze, L. Acuña, J. Kolecki, J. A. Johnson, A. P. Asnodkar, K.
M. Boley, M. Deleuil, O. Mousis, W. R. Panero, and J. Wang
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In this publication, I combined our interior-atmosphere model with the adaptive MCMC to
estimate the composition of K2-106 b (see Sect. 5.2). The interior was coupled with the latest
version of the atmospheric model (see Chapter 4) for the scenarios that allow for the presence of an
envelope (scenarios 2 and 3).

Irradiated Ocean Planets Bridge Super-Earth and
Sub-Neptune Populations (Mousis et al. 2020)
O. Mousis, M. Deleuil, A. Aguichine, E. Marcq, J. Naar, L. Acuña Aguirre, B. Brugger, and T. Gonçalves

I contributed to this publication by revising and correcting the implementation of the supercritical
water layer in the interior structure model done by J. Naar. I also helped in the generation of plots,
and the writing of the interior model section.

TOI-969: a late-K dwarf with a hot mini-Neptune in the
desert and an eccentric cold Jupiter (Lillo-Box et al. In rev)
J. Lillo-Box, D. Gandolfi, D.J. Armstrong, K. A. Collins, L. D. Nielsen, R. Luque, J. Korth, S. G. Sousa, S.
Quinn, L. Acuña, S. B. Howell, G. Morello, C. Hellier, S. Giacalone, S. Hoyer, K. Stassun, E. Palle, V.
Adibekyan, T. Azevedo Silva, D. Barrado, M. Deleuil, J. D. Eastman, F. Hawthorn, J. M. Irwin, J. M.
Jenkins, D. W. Latham, A. Muresan, C.M. Persson, A. Santerne, N. C. Santos, A. Savel, H. P. Osborn,
J. Teske, P. J. Wheatley, J. N. Winn, S. C. C. Barros, D. A. Caldwell, D. Charbonneau, R. Cloutier, J.
Crane, O. D. S. Demangeon, R. F. Díaz, X. Dumusque, M. Esposito, B. Falk, H. Gill, S. Hojjatpanah, L.
Kreidberg, I. Mireles, A. Osborn, 4, G. R.Ricker, J. Rodriguez, R. P. Schwarz, S. Seager, J. Serrano Bell, S.
A. Shectman, A. Shporer, M. Vezie, S. X. Wang, G. Zhou

The version of the interior-atmosphere model for water envelopes is the same as in Appendix A.1,
where the grids with atmospheric data from Pluriel et al. (2019) are employed. The non-adaptive
version of the MCMC is combined with this version of the model to estimate the core and water
mass fraction. In addition, I also embed the H/He envelope model described in Sect. 6.3 with
the non-adaptive MCMC to retrieve the volatile mass fraction assuming a H/He atmosphere for
TOI-969 b.
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C. Résumé en français

C.1. Introduction
La première exoplanète avérée, 51 Peg b, a été découverte par Mayor and Queloz (1995), élargissant
le champ de la science planétaire au-delà du système solaire. Depuis lors, plus de 5000 exoplanètes1

ont été détectées, avec des caractéristiques fort différentes de celles du système solaire. En effet, si
celles-ci étaient communément classées en trois groupes distinctifs: planètes telluriques (Mercure,
Vénus, la Terre et Mars), géantes gazeuses (Jupiter et Saturne), et les géantes glacées (Uranus et
Neptune), la population des exoplanètes révèle une grande diversité en termes de masses, de rayons
et de conditions d’irradiation. En particulier, la population d’exoplanètes de faible masse (moins de
20 masses terrestres, 20 M⊕) suggère l’existence d’au moins deux sous-populations sans équivalents
dans notre système solaire: les super-Terres, dont la densité moyenne est similaire à celle de la
Terre, et les mini-Neptunes, dont la densité moyenne est compatible avec une composition riche
en volatiles. Déterminer la composition de ces différentes familles de planètes est donc nécessaire
pour mieux comprendre leur mécanisme de formation et leur évolution.

La composition des exoplanètes ne peut pas être mesurée directement comme nous l’avons fait
pour l’intérieur de la Terre. Au lieu de cela, nous en sommes souvent réduits à comparer le rayon et
la masse, obtenus via nos techniques de détection, avec des modèles numériques, connus sous le
nom de modèles de structure interne. Ces modèles déterminent la façon dont la matière peut se
répartir à l’intérieur d’une planète de masse et rayon donnés, en tenant compte de la manière dont
les différents matériaux se comportent sous l’effet de la pression et de la température, à différentes
profondeurs. Dans le cas des exoplanètes possédant une atmosphère étendue, les télescopes
actuels ont permis les premières détections de certains composants clés, tels que l’eau, apportant
de premières estimations de leur composition atmosphérique. Ainsi, outre la structure interne,
il devient également nécessaire de prendre en compte les effets d’une atmosphère éventuelle au-
dessus du manteau, voire d’une couche d’eau à la surface. Depuis les travaux de Valencia et al.
(2006) et Seager et al. (2007), plusieurs modèles intérieurs ont été développés pour les super-Terres
et les sub-Neptunes (Lopez and Fortney 2014; Dorn et al. 2015; Brugger et al. 2016; Unterborn et al.
2018; Zeng et al. 2019; Turbet et al. 2020; Marounina and Rogers 2020), et chacun d’entre eux a des
implémentations, des hypothèses et des objectifs différents.

Dans cette thèse, nous présentons le développement d’un modèle d’intérieur qui reproduit
les propriétés des super-Terre et des sub-Neptunes. Le but de ce modèle est de représenter de
manière auto-cohérente les effets de l’atmosphère sur l’intérieur, et vice versa, permettant ainsi
une meilleur évaluation de la composition de ces planètes, même dans le cas où celles-ci sont
fortement irradiées. Dans l’introduction, nous décrivons le modèle de structure interne (Sect. C.2)
et le modèle d’atmosphère (Sect. 3) avec lequel il a été couplé au moment du démarrage de la
thèse, ainsi que ses originalités. La sous-section C.2.2 explique ensuite plus spécifiquement les
développements qu’il a fallu réaliser pour coupler de façon cohérente l’intérieur et l’atmosphère.
Etant donné que les paramètres planétaires fondamentaux, masse et rayon, sont mesurés avec une

1NASA Exoplanet Archive, mis à jour le 1er août 2022 (https://exoplanetarchive.ipac.caltech.edu).
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précision limitée, il était requis d’en tenir compte pour décider, parmi les modèles possibles, quels
paramètres décrivent au mieux la composition d’une planète donnée. Nous avons donc développé
un algorithme de Monte Carlo qui permet d’évaluer l’erreur associée à chacun des paramètres
estimés par le modèle, et ce, dans un temps de calcul raisonnable (Sect. C.2.3). L’application du
modèle à différents systèmes planétaires est présentée dans la section C.3: ces applications ont
porté sur l’analyse complète de systèmes multiplanètes, tel que TRAPPIST-1, bien connu pour
abriter des planètes qui pourraient maintenir de l’eau liquide à leur surface, mais également sur
un large échantillon de planètes en transit, caractérisées par des programmes de suivi en vitesses
radiales.

Enfin, dans la section C.4, nous discutons des conclusions et des implications des résultats de
cette thèse sur les processus de formation planétaires.

C.2. Modèle

C.2.1. Interieur
Le point de départ de ce travail est le modèle d’intérieur développé par Bastien Brugger (Brugger
et al. 2016, 2017). Construit en prenant pour référence les modèles développés pour l’intérieur de
la Terre, ce modèle suppose une planète différenciée, composée d’un noyau de fer, d’un manteau
riche en silicates, et une couche d’eau structurée en un océan liquide supérieur avec de la glace à
haute pression en dessous. C’est donc un modèle bien adapté, au premier ordre, au cas des planètes
terrestres.

L’idée d’une exoplanète possédant un océan global pouvant atteindre 100 km (la plus grande
profondeur d’océan de la Terre est de 11 km) a été proposée au début des années 2000 par (Léger
et al. 2004) qui ont ainsi proposé la dénomination de "planète océan". Ce modèle n’était cepen-
dant applicable stricto senso qu’aux planètes tempérées, la température et la pression de surface
devant être compatibles avec l’eau à l’état liquide. Cependant, de nombreuses planètes que nous
découvrons et caractérisons encore actuellement, sont très proches de leur étoile, ce qui augmente
leur température de surface au-dessus du point d’ébullition de l’eau. Si un océan se trouvait à la
surface de ces planètes proches de leur étoile et donc fortement irradiées, il entrerait en ébullition
jusqu’à ce que tout son contenu en eau soit passé en phase gazeuse, formant ainsi une atmosphère
de vapeur. Par conséquent, il était indispensable d’adapter le modèle original au cas des planètes
irradiées. La première étape de cette adaptation a consisté à rajouter pour la couche d’eau, la
phase correspondant à des pressions et températures élevées. Cette phase est la phase dite "su-
percritique", qui se trouve au-dessus du point critique de l’eau. Dans ce régime, il n’y a plus de
distinction claire entre les phases liquide et gazeuse. En fait, l’eau se comporte comme un fluide, et
présente simultanément les propriétés d’un liquide et d’un gaz. Par exemple, l’eau supercritique
peut traverser des solides comme un gaz, et dissoudre des matériaux comme un liquide. En outre,
la densité de l’eau supercritique change radicalement par rapport à celle de l’eau liquide. Dans
les modèles d’intérieurs, la fonction qui exprime la densité d’un matériau en tant que variable
dépendant de la pression et de la température, est appelée "équation d’état" (Equation of State,
EOS). Nous avons donc remplacé l’EOS de l’eau liquide et de la glace dans le modèle original de
Brugger et al. (2017) par l’EOS de l’eau supercritique, obtenue par des expériences en laboratoire et
des simulations de mécanique quantique par Mazevet et al. (2019). La température à l’intérieur de
la planète est calculée en supposant que la chaleur est conservée lorsqu’elle est transportée par
convection, ce qui signifie qu’il s’agit d’un processus adiabatique. Le profil adiabatique est calculé
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en utilisant un paramètre nommé paramètre de Grüneisen, dont la valeur dépend du matériau et
de sa phase. Nous avons également adopté ce paramètre tel que proposé par Mazevet et al. (2019)
par souci de cohérence. Nous avons comparé les effets de la modification de l’EOS et du paramètre
de Grüneisen obtenus par d’autres travaux qui sont basés sur des expériences ou sur des calculs
théoriques seuls, sur la densité planétaire totale. Nous avons constaté que ces derniers peuvent
produire des différences allant jusqu’à 20% du rayon, et que ces autres formulations telles que celles
de (Duan and Zhang 2006) surestiment le rayon, produisant des planètes avec intérieurs moins
denses, en particulier pour les planètes dont la fraction de masse d’eau est supérieure à 20%.

C.2.2. Atmosphère
Le modèle d’intérieur peut calculer la température, la densité, la masse enfermée dans un certain
rayon et l’épaisseur de la couche supercritique jusqu’à un minimum de 300 bars (la pression
à la surface de la Terre est de 1 bar). À des pressions inférieures, l’eau commence à devenir
transparente à la lumière stellaire, ce qui modifie la manière dont l’eau gazeuse (qui n’est plus
supercritique) transporte la chaleur. Le processus qui définit la façon dont la chaleur est distribuée
dans l’atmosphère est le transfert radiatif, et les calculs nécessaires pour résoudre l’équation du
transfert radiatif sont effectués par un modèle d’atmosphère.

Dans un premier temps, le modèle de structure interne a été couplé de façon cohérente avec une
grille de modèles d’atmosphère développés par E. Marcq et son équipe (Marcq 2012; Marcq et al.
2017; Pluriel et al. 2019). Ce couplage a permis de déterminer des relations masse-rayon réalistes
pour des planètes riches en eau et fortement irradiées (Mousis et al. 2020). Néanmoins, l’utilisation
de ces grilles présentait l’inconvénient de devoir gérer de grands ensembles de données et de ne pas
offrir une flexibilité suffisante dans le modèle de planète pour permettre de simuler des planètes
à l’atmosphère peu épaisse. Pour cette raison, j’ai développé un modèle d’atmosphère qui peut
générer des spectres d’émission et calculer l’albédo de Bond simultanément aux calculs du modèle
d’intérieur, modèle basé sur le modèle atmosphérique de Marcq et al. (2017).

Notre modèle atmosphérique prend en entrée la pression et la température de surface, qui sont
nécessaires pour calculer d’abord la dépendance de la température à la pression à differentes alti-
tudes de l’atmosphère. Ceci est obtenu en supposant que la région proche du bas de l’atmosphère
est convective, comme la troposphère de la Terre, où la convection est responsable de la circulation
des flux d’air et du transport des nuages. Si la température est suffisamment basse, la convection
se produit en même temps que la condensation, formant des nuages. Au-dessus de la couche
convective, nous modélisons une mésosphère à température constante, où le transport de chaleur
est dominé par la radiation au lieu de la convection. Immédiatement après avoir calculé le profil
pression-température, l’épaisseur de l’atmosphère est estimée en résolvant l’équation de l’équilibre
hydrostatique. Cette équation décrit l’équilibre entre la force gravitationnelle que l’intérieur de la
planète exerce sur l’atmosphère, et la pression interne du gaz atmosphérique. Un point discret (ou
une sous-couche) de l’atmosphère à pression et température constantes, absorbe, émet et diffuse
la lumière via différents processus radiatifs. Ces mécanismes sont l’absorption induite par collision
(Collision-induced absorption, CIA), l’absorption des raies, la diffusion Rayleigh et la diffusion des
nuages.

Absorption induite par collision (CIA). Elle est causée par les collisions inélastiques des molécules
d’un gaz. Dans les collisions inélastiques, l’énergie totale du système, qui est transportée par le
moment des molécules avant leur collision, n’est pas conservée dans le processus. Cela signifie
qu’un pourcentage de l’énergie est perdu lors de la collision et émis sous forme de chaleur. Cette
chaleur modifie la transparence (ou l’opacité) du gaz aux radiations externes, ce qui doit être pris
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en compte lors du calcul de son opacité totale, en particulier dans les gaz denses comme l’eau. Le
CIA contribue au continuum du spectre d’émission.

Absorption des raies. Les atomes et les molécules émettent et absorbent de l’énergie à différentes
fréquences en fonction des transitions quantiques de leurs électrons. Par conséquent, les raie
spectrales peuvent être perçues comme une empreinte digitale unique d’un gaz particulier. Les
raies spectrales de chaque gaz individuel doivent être prises en compte lors du calcul de l’opacité
finale d’un mélange de gaz. Dans notre modèle, ces deux gaz sont l’eau et le dioxyde de carbone
(CO2).

Diffusion de Rayleigh et des nuages. Lorsque les atomes et les molécules de l’atmosphère
reçoivent une radiation dont la longueur d’onde est supérieure à la taille des particules du gaz, la
lumière est diffusée presque uniformément dans toutes les directions. Dans le cas de l’atmosphère
terrestre, la taille des particules de l’atmosphère fait que la lumière optique bleue est la longueur
d’onde la plus affectée par la diffusion de Rayleigh, donnant au ciel sa couleur bleue caractéristique.
De même, les particules des nuages diffusent également la lumière, mais comme leur taille est
plus grande que celle des molécules de gaz, les directions vers lesquelles la lumière est dispersée
changent. Dans le cas des nuages, la plupart des radiations sont dispersées dans la même direction
que le rayon lumineux d’origine.

Tous ces processus sont pris en compte lors du calcul de l’opacité du gaz qui compose l’atmosphère,
qui est l’entrée du solveur d’équations de transfert radiatif (Stamnes et al. 2017). La solution finale
des équations de transfert radiatif est le spectre d’émission et le spectre de réflexion. Si nous
intégrons sur la longueur d’onde le spectre d’émission, nous obtenons la radiation sortant aux
grandes longueurs d’onde (Outgoing longwave radiation, OLR), qui est l’énergie totale émise par
l’atmosphère. D’autre part, l’intégration sur la longueur d’onde du spectre de réflexion donne
l’albédo de Bond, qui est le pourcentage de la lumière stellaire que la planète reflète. Celle-ci est
égale à 1 si toute la lumière est réfléchie, et à zéro si toute la lumière est absorbée. Si l’énergie émise
est égale à l’énergie absorbée, le flux d’énergie net de l’atmosphère est nul, et l’atmosphère est en
équilibre radiatif. Par conséquent, pour une quantité donnée d’énergie stellaire reçue au sommet
de l’atmosphère, l’OLR et l’albédo de Bond dépendent de la température et de la pression de surface,
qui peuvent être réglées avec précision pour établir l’équilibre radiatif dans l’atmosphère.

Dans le cas d’une atmosphère riche en eau, la densité de la couche d’eau supercritique dans le
modèle d’intérieur est très sensible aux changements de température et de pression. Cela signifie
que la température et la pression au sommet de la couche supercritique doivent être calculées
au préalable par le modèle d’atmosphère afin que le rayon final de la planète soit cohérent. J’ai
conçu un algorithme qui couple le modèle d’intérieur et le modèle atmosphérique de manière
autoconsistante pour résoudre ce problème.

Le modèle couplé d’intérieur-atmosphère prend en entrée la masse totale, les pourcentages de
masse qui composent le noyau et la couche d’eau, que l’on appelle fraction de masse du noyau
(Core mass fraction, CMF), et fraction de masse de l’eau (Water mass fraction, WMF) respectivement.
La luminosité stellaire et la distance de l’étoile sont aussi des paramètres d’entrée pour estimer
l’énergie stellaire reçue au sommet de l’atmosphère. Les données finales, calculées par le modèle,
sont le rayon total (et donc la densité), l’énergie émise et réfléchie par l’atmosphère, ainsi que la
pression et la température de surface. Il est important de noter que la pression de surface est liée à
la masse de l’atmosphère, qui contribue à la fraction de masse totale de l’eau.
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C.2.3. Monte-Carlo par chaînes de Markov
Le modèle intérieur-atmosphère que j’ai décrit dans les sections précédentes est un modèle direct
(forward model en anglais), ce qui signifie qu’il prend un ensemble de variables d’entrée qui ne
sont pas nécessairement observables. Afin de déterminer les erreurs robustes pour les paramètres
que le modèle ajuste, nous avons employé la méthode de statistique bayésienne de Monte-Carlo
par chaînes de Markov (Markov Chain Monte Carlo, MCMC) (Mosegaard and Tarantola 1995; Dorn
et al. 2015). Dans le cas spécifique de notre modèle, les observables sont la masse et le rayon de la
planète, et les paramètres estimés par le modèle sont ceux qui décrivent la composition interne:
CMF et WMF, et les paramètres atmosphériques: conditions de surface, épaisseur de l’atmosphère
et albédo de Bond.

Dans un premier temps, et pour le cas du seul modèle de structure interne, nous avons suivi
une approche similaire à celle décrite par Dorn et al. (2015). La première étape de l’algorithme
consiste à proposer un ensemble de paramètres d’entrée (masse, fractions de masse du noyau
et de l’eau) et à calculer le modèle correspondant pour obtenir le rayon correspondant. Pour
quantifier dans quelle mesure cet ensemble de paramètres d’entrée correspond aux paramètres
observés de la planète, nous calculons la fonction de vraisemblance logarithmique. Cette fonction
est inversement proportionnelle à la somme des résidus quadratiques divisée par les erreurs. En
d’autres termes, cette fonction diminuera si la différence entre le rayon et la masse observés et
calculés augmente. Un nouvel ensemble de paramètres d’entrée est ensuite tiré au hasard et leur
log-vraisemblance est comparée de nouveau à celle de l’ensemble initial de paramètres d’entrée.
Intuitivement, si la vraisemblance du second ensemble est plus grande que celle de l’ensemble
original, l’algorithme adopte comme nouvel état le deuxième ensemble; tandis que s’il est inférieur,
le deuxième ensemble est écarté et un nouvel ensemble de paramètres d’entrée est à nouveau tiré
au hasard pour être comparé à l’ensemble original. Dans le premier cas, on dit que l’on accepte
le modèle proposé, en avançant d’un pas dans la chaîne. Dans le second cas, le modèle proposé
est rejeté. Cependant, dans les algorithmes MCMC, la différence entre les deux vraisemblances
est obtenue et comparée à un nombre aléatoire tiré d’une distribution uniforme indépendante.
Si la différence entre les vraisemblances est supérieure à ce nombre aléatoire, la proposition est
acceptée. Cela signifie que la proposition n’est pas toujours acceptée lorsqu’elle a une plus grande
vraisemblance que l’état initial, puisque l’algorithme MCMC introduit un élément aléatoire dans la
décision. Le nombre de modèles dont les vraisemblances doivent être évaluées pour être comparées
à un seul état original, constitue les étapes d’une chaîne. Lorsqu’une proposition est acceptée,
une nouvelle chaîne est lancée. Les étapes exposées ci-dessus sont répétées jusqu’à ce qu’un
nombre fixe de propositions (ou chaînes) acceptées soit atteint. Après un nombre suffisamment
important de chaînes, on obtient l’histogramme des propositions acceptées et les distributions de
probabilité a posteriori (Posterior distribution functions, PDF) des variables ajustées par le modèle.
Par conséquent, étant donné les valeurs moyennes et les barres d’erreur de la masse et du rayon de
la planète, nous pouvons estimer les valeurs moyennes et les incertitudes des fractions de masse du
noyau et de l’eau, comme la moyenne et l’écart-type de leurs PDF respectives.

Dans l’implémentation la plus simple du MCMC, le modèle proposé est généré en ajoutant une
petite augmentation à la valeur originale de l’entrée du modèle, explorant l’espace des paramètres
à partir d’une distribution uniforme. Dans la première implémentation du MCMC que j’ai réalisée,
cette distribution était toujours la même, quelle que soit la position dans l’espace des paramètres.
Cependant, la probabilité de choisir une valeur dans l’espace des paramètres est directement
proportionnelle à son nombre de voisins. En d’autres termes, une fraction de masse d’eau de 0.01
(1%) a moins de chances d’être choisie qu’une fraction de masse d’eau de 0.50 (50%), qui se trouve
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en plein centre de la plage des valeurs possibles de la fraction de masse d’eau. Cela conduit à ce
que les zones de plus faible probabilité, à savoir les valeurs proches des limites 0 et 1, ne soient pas
échantillonnées efficacement, ce qui sous-estime l’écart-type des PDFs et biaise les estimations.
Pour résoudre ce problème, les limites de la distribution uniforme d’où est tiré le pas itératif sont
adaptées en fonction de l’état initial: ces limites sont diminuées quand on est proche de WMF = 0,
et augmentées si on se trouve dans des valeurs intermédiaires WMF = 0.30 - 0.70. C’est ce qu’on
appelle un MCMC adaptatif (Director et al. 2017), et la technique est particulièrement utile pour les
planètes rocheuses de la taille de la Terre et les super-Terres, dont les WMF sont proches de zéro,
mais néanmoins importantes pour déterminer leurs pressions de surface (< 300 bar).

C.3. Analyse de systèmes exoplanétaires
Tout au long de son développement, le code a été utilisé pour analyser différents systèmes plané-
taires, dans le cadre d’études spécifiques ou de l’analyse de planètes caractérisées par des pro-
grammes d’observation sol ou spatiaux. Certains de ces systèmes sont des systèmes compacts
dans lesquels plusieurs petites planètes transitent leur étoile. D’autres ont un nombre de planètes
connues restreint. L’ensemble des planètes que nous avons analysées couvre toute la gamme
de la population des petites planètes, et les étoiles hôtes ont des caractéristiques très différentes.
Après avoir présenté les analyses de ces planètes, nous verrons ce qu’elles nous apportent comme
informations quant aux mécanismes de formation et d’évolution de la population des petites
planètes.

C.3.1. TRAPPIST-1
TRAPPIST-1 est une étoile naine rouge ultra-froide, et peu lumineuse, qui héberge sept planètes de
la taille de la Terre (Gillon et al. 2016, 2017), dont trois se trouvent dans la zone habitable de l’étoile
(Habitable zone, HZ). Celle-ci correspond à la plage de distances de l’étoile hôte à laquelle, si la
planète possède de l’eau à sa surface, celle-ci pourrait être à l’état liquide. Toutes les planètes du
système de TRAPPIST-1 ont des masses et des rayons mesurés avec une bonne précision (Agol et al.
2021), ce qui fait de ce système un cas bien adapté pour déterminer leur composition. Cette analyse
peut apporter des informations sur les mécanismes de formation et d’évolution des planètes de
faible masse dans le même environnement initial.

Dans notre analyse, nous avons considéré deux scénarios: dans le scénario 1, les paramètres
observés sont la masse et le rayon de chaque planète; dans le scénario 2, nous avons également
considéré comme observable le rapport Fe/Si de l’étoile. Ce paramètre, déduit à partir de l’analyse
spectral détaillée de l’étoile, peut être utilisé pour mieux contraindre la masse du noyau par rapport
au manteau, car le fer et le silicium se trouvent principalement dans le noyau et le manteau,
respectivement. A défaut de mesures directes dans les planètes, l’utilisation des abondances
stellaires dans la modélisation de l’intérieur est justifiée par des simulations de formation de
planètes, incluant la chimie de la nébuleuse protoplanétaire, et qui montrent que les abondances
en Fe et Si de l’étoile et de la nébuleuse sont conservées à l’intérieur de la planète (Thiabaud et al.
2015). Dans le cas de planètes rocheuses avec des masses et des rayons précis, le rapport Fe/Si est
utile pour réduire l’ensemble des compositions d’intérieur possibles.

Pour le système de TRAPPIST-1, nous constatons que les planètes les plus denses du système
ont des densités similaires à celle de la Terre. Cela signifie que les planètes n’ont pas perdu une
partie de leur manteau. Un exemple de perte de manteau dans le système solaire est Mercure, dont
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l’abondance Fe/Si est plus élevée que pour les autres planètes telluriques (à savoir la Terre et Vénus).
La perte du manteau peut être causée par des collisions qui arrachent la couche la plus externe de
l’intérieur après la formation de la planète, ou par l’évaporation du manteau, dans un processus
lors duquel la radiation de l’étoile chauffe le manteau et l’évapore. Dans le scenario 1, où le rapport
Fe/Si est déduit par le modèle, à partir des rapport Fe/Si individuels nous avons estimé un Fe/Si
commun pour toutes les planètes du système de 0.45 - 0.97, valeur qui est également en accord
avec le rapport Fe/Si mesuré de l’étoile hôte. Ce rapport Fe/Si correspond à une fraction de masse
des noyaux planétaires du système de 23% à 40%, intervalle qui inclut la valeur de la fraction de
masse de la Terre (32%).

Pour la fraction de masse d’eau estimée pour chaque planète du système, nous avons trouvé que
celle-ci augmente au fur et à mesure que l’on s’éloigne de l’étoile pour les planètes internes (b à
e). Cette augmentation est suivie d’un palier, avec une fraction de masse d’eau constante pour les
planètes les plus externes (f à h). TRAPPIST-1 d semble être la seule exception à cette tendance
au sein du système, puisqu’elle présente un contenu en eau légèrement supérieur à celui de la
planète e dans notre analyse initiale, où nous avons considéré que son hydrosphère est une couche
d’eau condensée pure. Cependant, on peut souligner que nous avons constaté que la densité et
le flux incident de TRAPPIST-1 d sont également compatibles avec une atmosphère dominée par
le CO2 en équilibre, avec une pression de surface de 300 bar. Ceci suggère que l’eau pourrait être
présente sous forme gazeuse dans une atmosphère secondaire, donnant une fraction de masse
volatile inférieure à celle de la planète e.

Compte tenu de sa densité et de ses conditions d’irradiation, il est finalement peu probable que la
planète d présente un océan d’eau liquide, bien que ce scénario ne puisse être complètement écarté
tant que la composition de l’atmosphère ne sera pas connue. Les planètes e, f et g ont de meilleures
perspectives en termes d’habitabilité. L’hydrosphère de ces planètes pourrait être stratifiée en
une couche superficielle de glace ou d’eau liquide. Dans le cas des glaces à basse pression, leur
base pourrait être fondue par la chaleur fournie par le manteau, et former une couche océanique
inférieure (Noack et al. 2016). Pour une fraction de masse d’eau supérieure à 10%, il y a 50% de
chances qu’une couche habitable d’eau liquide se forme sous la surface. Pour une fraction de masse
d’eau supérieure à 14%, l’hydrosphère est inhabitable. Dans notre scénario le plus conservateur
(scénario 1), les planètes e à g atteignent ces valeurs dans leurs barres d’erreur, bien que leurs
valeurs minimales s’étendent jusqu’à 0-3% d’eau, ce qui les placerait dans le régime habitable.

C.3.2. Systèmes multiplanétaires
Nous avons effectué une analyse similaire avec un échantillon d’autres systèmes multiplanétaires
afin de déterminer leur composition, et vérifier si d’autres systèmes présentent une tendance
similaire à celle du système de TRAPPIST-1 pour leur fraction de masse d’eau.

Cette étude nous a permis de montrer que les systèmes multiplanétaires présentent une nette
dichotomie entre les planètes intérieures et sèches, et les planètes extérieures, riches en matières
volatiles. Elle a également mis en évidence des disparités de composition d’un système à l’autre.

Le système K2-138 présente la même tendance d’un gradient plus plateau que nous avons
observée dans TRAPPIST-1. Kepler-102 pourrait potentiellement présenter une fraction de masse
d’eau constante dans la partie extérieure du système également, étant donné les incertitudes sur
les paramètres fondamentaux de ses planètes les plus extérieures. D’autres systèmes ne présentent
qu’un gradient comme tendance de leur contenu en eau, comme Kepler-11, Kepler-80 et les planètes
intérieures de TOI-178.

Les systèmes multiplanétaires présentent une diversité dans leurs contenus en volatiles. Dans
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certains de ces systèmes, une ou deux planètes semblent faire exception à une tendance générale
dans le système en question. Nous sommes en mesure d’expliquer les exceptions à la tendance
particulière de chaque système par l’échappement atmosphérique de Jeans et/ou la photoéva-
poration due aux radiations X et ultraviolet (UV). Ces deux mécanismes conduisent en effet la
planète à perdre une quantité significative de son atmosphère. Dans l’échappement atmosphérique
de Jeans, l’énergie cinétique des atomes et des molécules dépasse l’énergie gravitationnelle de la
planète. Les molécules ayant suffisamment d’énergie cinétique s’échappent du fait de leur agitation
thermique (Jeans 1925). Dans la photoévaporation XUV, les couches supérieures de l’atmosphère
sont chauffées par le rayonnement stellaire incident. Les gaz atmosphériques ainsi chauffés se
dilatent, ce qui entraîne l’accélération des molécules et leur fuite vers l’espace (Owen and Jackson
2012).

Enfin, bien qu’à ce jour notre modèle d’atmosphère soit encore limité aux atmosphères riches
en eau ou CO2, nous avons pu identifier les planètes de nos systèmes qui présentent vraisem-
blablement une atmosphère riche en H/He. Pour ce faire, nous comparons le rayon obtenu et
celui observé: si le rayon moyen obtenu par le modèle est significativement inférieur au rayon
observé, cela signifie que la densité réelle de la planète est inférieure à celle de notre planète avec
hydrosphère telle que simulée. Par conséquent, son atmosphère doit être composée d’un élément
moins dense et plus volatile que l’eau, comme l’hydrogène et l’hélium.

Enfin, nous notons également que les planètes sèches avec des fractions de masse de noyau
élevées sont toujours situées dans la partie la plus interne du système planétaire. Ces planètes
ont des fractions de masse de noyau similaires à celle de Mercure (70% de noyau) ou plus, ce qui
signifie qu’elles ont pu subir une perte du manteau, ou qu’elles se sont formées dans des zones de la
nébuleuse protoplanétaire où le fer était très abondant. Selon les modèles de formation de planètes,
ces régions se trouveraient à proximité de la ligne de roche (Aguichine et al. 2020; Scora et al.
2020), qui est l’orbite à laquelle les éléments réfractaires (Fe et Si) atteignent leur température de
condensation. Cela correspond à la température à laquelle les roches de silicate et de fer s’évaporent
en gaz.

Ces résultats apportent des contraintes utiles pour mieux comprendre la formation et de l’évolution
des planètes de faible masse dans les systèmes multiplanétaires. L’augmentation du contenu en eau
avec la distance croissante à l’étoile pour les planètes interne de ces systèmes planétaires pourrait
être due à la photoévaporation XUV ou à une perte de masse alimentée par le noyau (core-powered
mass loss). Dans ce dernier mécanisme, le noyau de la planète émet de la chaleur qui provient de
l’accrétion initiales de roches et de planétésimaux de la nébuleuse protoplanétaire. Le matériau
accrété de la nébuleuse contient également de l’hydrogène, formant une atmosphère primordiale.
Si cette enveloppe primordiale d’hydrogène se refroidit plus lentement que le noyau, l’énergie
thermique émise par le noyau accentue la perte de masse atmosphérique de l’enveloppe (Ginzburg
et al. 2016). Dans TRAPPIST-1 et K2-138, la fraction de masse d’eau constante des planètes ex-
térieures peut être produite si les planètes se sont formées au voisinage de la ligne de glace d’eau.
De même que pour le fer dans les lignes de roches, certains auteurs pensent que l’eau est abondante
à l’orbite où l’eau commence à se condenser en glace (Mousis et al. 2019, 2021). Par la suite, ces
planètes auraient pu migrer vers l’intérieur du système jusqu’à leur position actuelle, mécanisme
qui est suggéré par les distances de leurs orbites, qui sont proportionnelles entre elles (Terquem
and Papaloizou 2007; Izidoro et al. 2017; Ramos et al. 2017).
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C.3.3. Cibles d’intérêt du JWST
Notre modèle d’atmosphère et d’intérieur peut estimer les paramètres atmosphériques de base pour
les atmosphères d’eau et de CO2, en fonction de la masse et du rayon de la planète. Les paramètres
atmosphériques que nous sommes en mesure d’estimer sont la pression et la température de
surface, l’épaisseur et la masse de l’atmosphère, et l’albédo de Bond. Connaissant les conditions de
surface, on peut les utiliser pour générer des spectres d’émission, qui peuvent être ensuite utilisés
avec des simulateurs d’observation pour les télescopes actuels, tels que le télescope spatial James
Webb (Batalha et al. 2020). Pour générer des spectres d’émission pour le JWST, nous adaptons le
modèle d’atmosphère pour augmenter la résolution spectrale. La résolution d’un spectre quantifie
la capacité d’un instrument à distinguer deux raies spectrales dont les longueurs d’onde respectives
sont très proches. J’ai appliqué cette version haute résolution de notre modèle atmosphérique à
deux planètes que l’on propose d’observer avec le JWST: TRAPPIST-1 c et 55 Cancri e.

D’après notre analyse de la composition de ces planètes (Sect. C.3.1), nous constatons que
TRAPPIST-1 c pourrait avoir une atmosphère dont la pression de surface est comprise entre 7 et 22
bars, ou pas d’atmosphère du tout. Le poids moléculaire du CO2 est plus élevé que celui de la vapeur
d’eau, ce qui produit une atmosphère plus comprimée pour une pression et une température de
surface similaires. En outre, les modèles avec une enveloppe de CO2 peuvent accommoder une
atmosphère plus massive pour TRAPPIST-1 c que les modèles riches en eau. Nous notons que pour
trois des filtres photométriques du JWST, les barres d’erreur du flux moyen des atmosphères d’eau
et de CO2 ne se chevauchent pas, ce qui montre que les observations dans ces filtres permettront
de faire la différence entre ces deux compositions. Par conséquent, l’observation de TRAPPIST-1 c
en émission avec un de ces filtres, comme proposé par Kreidberg et al. (2021), nous permettra de
discerner entre les deux cas.

Pour la super-Terre chaude 55 Cancri e, nous observons qu’une enveloppe à 100% CO2 n’est
pas assez étendue pour expliquer sa faible densité, selon notre modélisation de son intérieur. Par
conséquent, nous supposons une atmosphère dominée par l’eau puisque l’épaisseur de son at-
mosphère est similaire à celle d’une atmosphère de silicate, telle que proposée par (Keles et al.
2022) comme composition la plus probable. Les atmosphères silicatées (ou minérales) se forment
lorsque la radiation de l’étoile hôte chauffe la surface d’une planète rocheuse sans atmosphère, éva-
porant sa surface rocheuse sans décaper le manteau, qui peut être composé de roches basaltiques
(Kreidberg et al. 2019). Le cas d’une atmosphère dominée par l’eau reproduit bien la masse et le
rayon observés, ce qui suggère que l’eau en tant qu’espèce à l’état de trace pourrait être nécessaire
pour expliquer la faible densité de 55 Cancri e. D’autre part, la masse de silicates secs purs pourrait
expliquer la faible densité planétaire si le noyau et le manteau étaient moins denses que ceux des
intérieurs semblables à la Terre, ce qui indique un manteau riche en carbone comme le suggère
(Madhusudhan 2012). Nous remarquons que pour les longueurs d’onde inférieures à 3,5 µm, le
bruit des instruments du JWST est trop élevé pour distinguer des raies spectrales. Néanmoins, le
reste de la gamme spectrale des observations proposées par Hu and Damiano (2021) a un faible
niveau de bruit, ce qui rend les caractéristiques spectrales de l’eau faciles à identifier avec JWST
pour 55 Cancri e.

C.3.4. Propriétés déduites de la composition des planètes
Nous profitons de l’échantillon complet de planètes que nous avons analysées avec le modèle
d’intérieur-atmosphère durant son développement pour dériver des propriétés de la population
générale des planètes de faible masse. Cet échantillon est constitué de 46 exoplanètes, comprenant
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à la fois des planètes de taille proche de celle de la Terre, des super-Terres et des sub-Neptunes.
Nous calculons l’histogramme des rayons observés de notre échantillon, que nous appelons la
distribution des rayons. Dans celle-ci, les super-Terres correspondent aux planètes avec des frac-
tions de masse d’eau inférieures à 10%, alors que la population des sub-Neptunes est constituée de
planètes avec des fractions de masse d’eau de plus de 20%, et un maximum de 70%. La distribution
de WMF pour les sub-Neptunes parait essentiellement uniforme, avec une interruption possible
pour des valeurs de la WMF entre 0.3 et 0.4 Cette absence de planètes avec une WMF entre 30 et
40% pourrait indiquer une transition entre les enveloppes riches en eau et celles riches en H/He.
Nous voyons également que les planètes avec une masse inférieure à 2,5 M⊕ ne présentent pas de
fractions massiques d’eau supérieures à 10%, ce qui pourrait être dû à une fuite atmosphérique de
Jeans les empêchant de conserver des enveloppes massives. Enfin, la distribution de la fraction de
masse du noyau de notre échantillon contient à la fois des planètes de type terrestre avec des CMFs
= 20 à 40%, et des super-Mercures avec un CMF > 80%. Lorsque la fraction de masse du noyau est
obtenue en tenant compte du rapport planétaire Fe/Si à partir des abondances stellaires de l’hôte,
sa distribution est gaussienne (forme de cloche), en accord avec les études précédentes (Plotnykov
and Valencia 2020).

Notre échantillon présente également une large gamme d’incertitudes relatives (barres d’erreur)
en masse et en rayon, ce qui nous permet d’analyser comment l’affinement de la précision des
paramètres observables peut améliorer la détermination de la composition. Nos résultats sont
en accord avec les travaux précédents (Otegi et al. 2020) et montrent que l’augmentation de la
précision du rayon pour les sub-Neptunes améliore l’estimation de la fraction de masse de l’eau,
mais n’a aucun effet sur la fraction de masse du noyau. De plus, la prise en compte du rapport
Fe/Si comme donnée d’entrée permet de mieux contraindre la fraction de masse du noyau pour
les sub-Neptunes, mais fournit des estimations très similaires pour la fraction de masse d’eau par
rapport à la prise en compte des seules données de masse et de rayon. Dans le cas des super-Terres,
l’incertitude du CMF est réduite lorsque la précision du rayon est améliorée et que le rapport Fe/Si
est inclus dans la modélisation comme donnée d’entrée.

C.4. Perspectives
Le problème des intérieurs et des compositions planétaires présente des dégénérescences. Cela
signifie que différentes solutions existent pour expliquer un meme jeu d’observables. Dans notre
cas, différentes compositions peuvent en effet donner la même masse, le même rayon et les mêmes
densités. Nous avons vu précédemment que pour les super-Terres rocheuses avec des densités
précises, le rapport de l’abondance Fe/Si de leur étoile hôte peut briser cette dégénérescence.
Cependant, il nous reste une autre dégénérescence qui affecte certaines super-Terres et la plu-
part des sub-Neptunes. Dans notre modèle, nous avons toujours considéré que l’atmosphère
de la planète a une composition soit riche en eau soit en CO2, mais nous ne pouvons connaître
avec certitude la composition de l’atmosphère qu’avec son spectre. Nous ne pouvons pas con-
naître la composition de l’atmosphère avec un modèle intérieur seul car une enveloppe d’eau et
une atmosphère d’hydrogène peuvent donner une épaisseur atmosphérique similaire avec des
masses atmosphériques différentes. Si la composition de l’atmosphère est connue, un modèle
d’intérieur-atmosphère, tel que celui que nous avons développé dans cette thèse, pourrait être
utilisé pour contraindre la pression et la température de surface. Les estimations actuelles de la
composition atmosphérique de certaines sub-Neptunes, dérivées de différentes modélisations,
suggèrent un mélange de H/He, d’eau et d’autres composés (Madhusudhan et al. 2020; Bézard
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et al. 2020; Guzmán-Mesa et al. 2022), tandis que les super-Terres pourraient avoir des composi-
tions atmosphériques plus exotiques, comme des atmosphères minérales (Keles et al. 2022). Par
conséquent, les futurs développements du modèle d’atmosphère doivent inclure davantage de
gaz légers comme l’hydrogène et l’hélium. En outre, l’algorithme MCMC du modèle pourrait être
modifié pour prendre en compte non seulement la masse et le rayon observables de la planète,
mais aussi le spectre observable de l’atmosphère de la planète. Cela permettrait de rompre la
dégénérescence entre la composition de l’enveloppe et sa pression de surface.

Il a été démontré par différents auteurs que l’abondance d’une espèce chimique particulière
dépend de la pression de surface de l’atmosphère d’une planète (Yu et al. 2021; Tsai et al. 2021; Hu
et al. 2021). Cela est dû à un processus appelé photochimie: deux ou plusieurs atomes réagissent
avec la lumière stellaire reçue au sommet de l’atmosphère pour produire certaines molécules.
L’efficacité de la réaction, et donc l’abondance de la molécule finale, dépend de la température et
de la pression auxquelles la réaction a lieu. Par conséquent, étant donné le spectre de l’atmosphère
d’une planète donnée, nous pouvons modéliser ensemble l’intérieur et la photochimie pour con-
traindre les conditions de la couche la plus interne de l’atmosphère. Ceci est particulièrement
intéressant pour les planètes rocheuses de la zone habitable, car si nous connaissons la densité
de la planète et ses conditions de surface, nous pouvons savoir si elle présente un océan liquide
où la vie pourrait éventuellement se développer. C’est pourquoi la détection et la caractérisation
des planètes tempérées de taille terrestre sont une priorité pour les futures missions, telles que
PLATO (Rauer et al. 2014). PLATO sera capable de détecter des planètes tempérées de taille terrestre
autour d’étoiles de type solaire et de fournir des mesures précises de leur rayon pour caractériser
leur densité. Il s’agira du premier programme sur les planètes habitables tempérées, qui fournira
un échantillon de cibles dont on pourra par la suite, obtenir le spectre de l’atmosphère et, sur le
plus long terme, rechercher des biosignatures. Les biosignatures sont des combinaisons d’espèces
gazeuses à des abondances données qui ne sont pas attendues dans des atmosphères en équilibre
chimique, mais qui peuvent être produites par l’action de la vie. Notons que les processus qui
pourraient conduire l’atmosphère d’une planète terrestre hors de l’équilibre chimique pourraient
également être géologiques. Il est donc essentiel de modéliser le déséquilibre chimique produit
par les processus géologiques abiotiques (c’est-à-dire le volcanisme, la météorisation), pour éviter
les faux positifs des biosignatures (Truong and Lunine 2021). Certains des instruments du Téle-
scope géant européen (Extremely large telescope, ELT), comme le spectrographe ANDES, permettra
d’acquérir le spectre de l’atmosphère de planètes de faible masse pour rechercher des biosignatures
(Snellen et al. 2013; Lopez-Morales et al. 2019). Dans les 20 à 30 prochaines années, le nombre de
planètes de taille terrestre pour lesquelles nous disposerons de données atmosphériques pourrait
augmenter grace aussi à de futures missions spatiales comme Luvoir (The LUVOIR Team 2019),
HabEx (Gaudi et al. 2018) et LIFE (Konrad et al. 2021).

Enfin, mentionnons qu’une exploration par sonde in-situ des géantes de glace du système
solaire est une priorité pour les 30 à 40 prochaines années. Les intérieurs et les atmosphères
d’Uranus et de Neptune sont encore mal compris, car nous ne disposons que de données acquises
à distance (Mousis et al. 2018; Fletcher et al. 2020). Une telle mission est essentielle pour briser
les dégénérescences dont nous avons parlé plus haut pour les sub-Neptunes, car nos modèles
d’intérieur et d’atmosphère pour cette classe de planètes sont basés sur nos connaissances des
géantes gazeuses du système solaire, tout comme la Terre et Vénus sont les références pour les
modèles de super-Terre.
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